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Abstract. In this article, a simple and new algorithm is proposed, namely the modified variational iteration algorithm-I (mVIA-I), 
for obtaining numerical solutions to different types of fifth-order Korteweg de-Vries (KdV) equations. In order to verify the precision, 
accuracy and stability of the mVIA-I method, generated numerical results are compared with the Laplace decomposition method, 
Adomian decomposition method, Homotopy perturbation transform method and the modified Adomian decomposition method. 
Comparison with the mentioned methods reveals that the mVIA-I is computationally attractive, exceptionally productive and 
achieves better accuracy than the others. 

Keywords: Korteweg–de Vries equation, Modification of variational iteration algorithm-I, Fifth order KdV equation, Generalized KdV 
equation. 

1. Introduction 

Nonlinear phenomena appear in many areas of scientific and engineering fields, for example, fluid dynamics, quantum 
mechanics, nonlinear optics, plasma physics, chemical kinetics, solid-state physics and mathematical biology and so forth. All these 
phenomena are modeled as nonlinear partial differential equations (PDEs) [1]–[10]. Among these PDEs, the generalized fifth order 
Korteweg-de Vries (gfKdV) equations are used to study various important topics in nonlinear physical phenomena. This equation 
not just portrays the movement of long waves in shallow water under gravity and in a one-dimensional nonlinear lattice, but at the 
same time, it is a significant mathematical model for magneto-sound propagation in plasmas [11] and a chain of coupled nonlinear 
oscillators [12]. The gfKdV equation is very difficult and still, general exact solutions of these highly nonlinear physical problems 
are not known. So far, the exact solution of the gfKdV equation is found for the special case of solitary waves in [13]. In general, 
many analytical and numerical approaches are used for finding the solution to the gfKdV equation. The steady solution of the fifth-
order Korteweg de-Vries (KdV) equation is investigated in [11], while the proposed finite difference method is employed for solving 
this equation in [14]. In [15], first reduced this equation to ODEs and then developed several analytical and numerical methods. 
However, these strategies are difficult to utilize and some of the time requires repetitive work and calculation [16]. Recently, the 
decomposition method is used for the numerical solutions of the fifth-order KdV equation in [17] whereas modified Adomian 
decomposition method is used in [18]. Also, He's semi inverse scheme [19], Laplace decomposition approach [20], Differential 
transform method [21], the tanh and sine–cosine methods [22], Homotopy analysis technique [23], Laplace decomposition method 
[24], finite difference schemes [14], homotopy perturbation method [25], Fractional homotopy analysis transform technique [26], 
Exp-function method [27], Variational iteration technique [28]–[31], homogeneous balance method and many more methods can be 
found in the literature for solving such types of highly nonlinear physical problems. 

The KdV equation is a nonlinear partial differential equation which is extensively arising in various physical applications and 
plays a very significant role in numerous applications like in shallow water waves in plasmas, nonlinear LC circuit's waves, ion-
acoustic waves and magneto-acoustic waves. This equation has experienced a few modifications and extensions leading to several 
variants being presented up in three, five, seven or higher-order differential equations. Though, some noteworthy types of them are 
specifically significant in modeling physical phenomena. The main types of the KdV equation of fifth order which are the 
indispensable models for numerous physical phenomena 

1. The Sawada-Kotera (SK) equation [32] 

���� + 45 �� ���	 + 15 ���	 ����	� + 15  ����	� + ����	� = 0. (1) 
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2. The Caudrey-Dodd-Gibbon equation [33] 

���� + 180 �� ���	 + 30 ���	 ����	� + 30  ����	� + ����	� = 0. (2) 

 
3. The Kaup-Kuperschmidt equation [33] 

���� + 20 �� ���	 + 25 ���	 ����	� + 10  ����	� + ����	� = 0. (3) 

 
4. The Lax equation [34] 

���� + 30 �� ���	 + 30 ���	 ����	� + 10  ����	� + ����	� = 0. (4) 

 
5. The Ito equation [33] 

���� + 2 �� ���	 + 6 ���	 ����	� + 3  ����	� + ����	� = 0. (5) 

 
6. Fifth order KdV equation [24] 

���� + � ���	 − � ����	� + ����	� = 0, (6) 

 
7. Kawahara equation [35] 

���� + � ���	 + ����	� − ����	� = 0. (7) 

 
The main aim of this study is to use mVIA-I which is the modified form of variational iteration method [36] for finding the 

numerical solution of nonlinear PDEs in physical sciences and engineering which are modeled via the fifth order KdV equation. The 
paper is organized in the following sections. In section 1, the proposed method and its implementation are described. In section 2, 
seven different types of KdV equations are numerically solved to show the applicability and accuracy of the modified algorithm. 
Some concluding remarks are discussed in the last section 3. 

2. Implementation of mVIA-I for Fifth Order PDEs 

In this section, we illustrate mVIA-I for the numerical treatment of different KdV type equations of the fifth order. Consider the 
generalized form of the fifth order KdV equation 

���� + � � ����	� + � ���	 ����	� + � �� ���	 + ����	� = 0, (8) 

where γ, β and α are nonzero arbitrary constants. 
Approximate solution �����	  of the eq. (8) for given initial condition �!�	  can be acquired as below 
 

�����	, �, ℎ = �!�	, �, ℎ + ℎ # $�% &'()�*,+,, '�+ + � ���	, %, ℎ '-()�*,+,, '�* -.//////0//////12! + � '()�*,+,, '�* '3()�*,+,, '�* 3./////0/////1 + � ����	, %, ℎ '()�*,+,, '�* .//////0//////1 +
'4()�*,+,, '�* 4.//0//15 d%, 

(9) 

Where λ  and ℎ are unknown parameters. The first one is known as the Lagrange multiplier [37], while the second one is an 
auxiliary parameter, which was used to accelerate the convergence in different methods [38]–[44]. 
The significant value of the Lagrange multiplier can be achieved either by variational principle reported in [45]–[47] or by applying 
δ  on both sides of the recurrent relation (9) with respect to ���	 , which leads to 

7�����	, �, ℎ = 7�!�	, �, ℎ 
+ ℎ7 8 $�% 9����	, %, ℎ ��% + � ���	, %, ℎ �����	, %, ℎ ��	 �

.///////0///////12
!

+ � ����	, %, ℎ ��	 �����	, %, ℎ ��	 �
.////////0////////1 + � ����	, %, ℎ ����	, %, ℎ ��	 .///////0///////1

+ �����	, %, ℎ ��	 �
.///0///1: d%, 

(10) 

where ���	, %, ℎ .//0//1  is treated as a restricted term, such that, δ ���	, %, ℎ .//0//1 = 0. The constant ℎ is an auxiliary parameter which is used 
to make sure the convergence of approximated solutions to the exact one by limiting the norm 2 of residual error over the space 
of the given system. 
 
The optimal value of ℎ  improves the proficiency and precision of the algorithm. For this purpose, a residual function for 
approximate solution is defined as 

=>�	,  �,  ℎ = ��>�	,  �,  ℎ ��� + ��>�	,  �,  ℎ ���>�	,  �,  ℎ ��	 � + � ��>�	,  �,  ℎ ��	 ���>�	,  �,  ℎ ��	 � � �>��	, �, ℎ ��>�	,  �,  ℎ ��	 + ���>�	,  �,  ℎ ��	 � , (11) 
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where the number of approximations is denoted by ?. The square of the function (11) for the pth-order approximation with respect 
to the parameter ℎ for �	, � ϵ AB,  CD × AB,  CD is 

F>� ℎ = G 1�C + 1 � H HI=>�J, K, ℎ L�M
NOP

M
QOP

R
S3. (12) 

The optimal value of ℎ will be chosen at a point where the function (12) gives minimum value. Furthermore, this approach will give 
the value of ℎ as 1 in small domains, where the standard VIA-I gives high order accuracy. 
The recurrence relation gives the following iterative formula after using values of both the parameters: 

7�����	, �, ℎ = 7�!�	, �, ℎ 
+ ℎ7 8 $�% &����	, %, ℎ ��% + � ���	, %, ℎ �����	, %, ℎ ��	 �

2
!

+� ����	, %, ℎ ��	 �����	, %, ℎ ��	 � + � ����	, %, ℎ ����	, %, ℎ ��	 
+ �����	, %, ℎ ��	 � 5 d%. 

(13) 

Taking start with an appropriate initial guess, the other successive iterative solutions can be obtained by employing the iterative 
formula (13) and at last, the exact solution ��	  can be obtained as 

��	 = lim�→∞���	 . (14) 

This step by step process is termed as mVIA-I. We use this procedure for the numerical treatment of the different types fifth order 
KdV equations, which is able to give numerical solutions in a direct way and very accurately for linear/nonlinear problems arise in 
different areas of science and engineering. 

3. Numerical Examples 

In his section, mVIA-I is used for finding the numerical solution to the Sawada-Kotera (SK) equation, Caudrey-Dodd-Gibbon 
equation, Kaup-Kuperschmidt equation, a fifth order KdV equation, Lax equation, Ito equation and Kawahara equation. Numerical 
and graphical results obtained by the proposed process are simulative, constructive, noteworthy, accurate and significant. Illustrated 
test problems discovered the power and effectiveness of the proposed technique. 

3.1. Test Problem 1 

Consider the Sawada-Kotera (SK) eq. (1) having the initial condition 

��	, 0 = 2X� sech�AX�	 − ] D, (15) 

where ^F]ℎ�_  denotes the hyperbolic secant of _. 
The exact solution to the SK eq. (1) with the initial condition (15) is given in [18] as 

��	, � = 2X� sech�AX�	 − 16X`� − ] D. (16) 

The numerical solutions for the test problem 3.1, corresponding to the eq. (1) and generated using mVIA-I, are reported in Table 1. 
To show the efficiency and applicability of the suggested algorithm in comparison with the Adomian decomposition method (ADM) 
[48] and the modified ADM [9], the absolute errors are reported in Tables 1, 2 for various values of � and 	 and for X = 0.01, and ] = 0.0. 
A full agreement between the results of mVIA-I and exact solution can be observed, which confirms the validity of the proposed 
algorithm. In comparison with the results from [18][48], one can ensure that the results of mVIA-I are more accurate and reliable. 
Results are also shown graphically, the behavior of approximate and exact solutions can be seen in Fig. 1 for � = 10 and X = 0.01 while the absolute error graph and comparison of approximate and exact solutions are shown in Fig. 2 for X =  0.01. 

3.2. Test Problem 2 

The Caudrey-Dodd-Gibbon eq. (2) has the initial condition 

��	, 0 = X�F�*�1 + F�* �, (17) 

and its exact solution was given in [18], as follows 

��	, � = X�F�a*b�c2d�1 + F��*b�c2  �. (18) 

Table 1. Numerical results to the SK equation (1) in terms of absolute errors using mVIA-I for the Test Problem 3.1. 

x/t 
t=0.2 t=0.4 t=5.0 

mVIA-I ADM [18] mVIA-I ADM [18] mVIA-I ADM [18] 
2 
4 
6 
8 

10 

6.23416 ×10-19 

4.33680 ×10-19 

1.89735 ×10-19 

7.86046 ×10-19 

5.69206 ×10-19 

1.54499 ×10-18 

5.36680 ×10-18 

1.13841 ×10-17 

1.97054 ×10-17 

3.02492 ×10-17 

7.04731 ×10-19 
4.60785 ×10-19 
1.62630 ×10-19 
8.40256 ×10-19 
5.42101 ×10-19 

4.52654 ×10-18 
1.12757 ×10-17 
2.02746 ×10-17 
3.15232 ×10-17 
4.50486 ×10-17 

7.04731 ×10-19 
4.33680 ×10-19 
1.35525 ×10-19 
7.58941 ×10-19 
5.42101 ×10-19 

6.64350×10-15 
1.32874×10-14 
1.99336×10-14 
2.65820×10-14 
3.32327×10-14 

Table 2. Comparison of numerical solutions to the SK equation (1) for the Test Problem 3.1. 

x/t 
t=0.2 t=0.4 t=0.5 

mVIA-I Modified ADM [48] mVIA-I Modified ADM [48] mVIA-I Modified ADM [48] 
0.1 
0.2 
0.3 
0.5 

8.13151 ×10-19 

8.13151 ×10-20 

4.87890 ×10-19 

4.06575 ×10-19 

9.59980 ×10-16 

1.91996 ×10-15 

2.87980 ×10-15 

4.79941 ×10-15 

8.13151×10-19 
2.71050×10-20 
5.96311×10-19 
3.25260×10-19 

1.91996×10-15 
3.83989×10-14 
5.75966×10-14 
9.59871×10-14 

9.75781×10-19 
2.16840×10-19 
4.06575×10-19 
3.25260×10-19 

6.64350×10-15 
1.32874×10-14 
1.99336×10-14 
3.32327 ×10-14 
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Fig. 1. The numerical solution (above) and exact solution (below) of the Test Problem 3.1 for t = 10 and k = 0.01. 

  

Fig. 2. Absolute error graph for x=10 (left) and comparison of exact and approximate solutions (right) of the Test Problem 3.1 for k = 0.01. 

The obtained numerical results from the mVIA-I for the Test Problem 3.2 are reported in Table 3. Results generated by mVIA-I show 
clear improvement over previous ones reported in [18], which indicate that the proposed algorithm is a powerful mathematical tool 
for getting an accurate numerical solution of the C-D-G equation. The results of the proposed algorithm (mVIA-I) are compared 
with the results of the modified  Adomian decomposition method [18]. 
Thus, it is evident from the numerical results and comparison with the results of [18] that the mVIA-I is clearly defined 
and the results of the proposed algorithm are more accurate. 

3.3. Test Problem 3 

The Kaup-Kuperschmidt eq. (3), exploits the initial condition 

��	, 0 = 24X�F�*A4F�* + F��* + 16DA16F�* + F��* + 16D� , (19) 

and generates the exact solution given in [18] by 

��	, � = 24X�F�*b2e4F�*b�42 + F��*b�42 + 16fe16F�*b�42 + F��*b��42 + 16f� . (20) 

The numerical results of Test Problem 3.3 generated using mVIA-I are illustrated graphically in Fig. 3. 

The graphs included in Fig. 3 illustrate the comparison of approximate and exact solutions in terms of absolute errors of 
the Test Problem 3.3for X =  0.01 and different values of  �. 

Table 3. Comparison of numerical solutions of C-D-G equation (28) for the Test Problem 3.2. 

x/t 
t=0.4 t=0.8 t=5.0 

mVIA-I ADM [18] mVIA-I ADM [18] mVIA-I ADM [18] 
2 
4 
6 
8 

10 

1.01643 ×10-20 

6.77626 ×10-21 

6.77626 ×10-21 

3.38813 ×10-21 

3.38813 ×10-21 

3.11957 ×10-21 

2.70138 ×10-21 

5.50257 ×10-21 

4.74685 ×10-21 

7.21049 ×10-21 

6.77626×10-21 
1.01643×10-20 
3.38813×10-21 

0.00000 
3.38813×10-21 

1.78930×10-20 
2.01336×10-20 
3.91461×10-20 
5.79897×10-20 

5.63358 ×10-20 

3.38813×10-21 
1.35525×10-20 
6.77626×10-21 
1.35525×10-20 

0.00000 

2.48025×10-18 
5.70681×10-18 
8.93995×10-18 
1.21797×10-17 

1.54092×10-17 
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Fig. 3. Exact and approximate solution’s comparison of the Test Problem 3.3 for different values of t and k = 0.01. 

 

Fig. 4. Exact and approximate solution’s comparison of the Test Problem 3.5 for t = 10 and k = 0.01 for the Test Problem 3.5. 

 

3.4. Test Problem 4 

The Lax's eq. (4) uses the initial condition 

��	, 0 = 2X�a2 − 3 tanh�aX�	 − ] dd (21) 

and possesses the exact solution given in [18] by 

��	, � = 2X�a2 − 3 tanh�aX�	 − 56X`� − ] dd, (22) 

where tanh�z  means the hyperbolic tangent function. From the numerical results of the Test Problem 3.4, generated using the 
mVIA-I and reported in Table 4 for different values of x and t, we conclude that the obtained results are pretty much agree with 
the  exact solution and with the results given in [18]. The present method can be easily extended to fractal differential equations 
or fractional differential equations, where fractal variational theory [49],[50] can be used to identify the Lagrange multiplier. 

3.5. Test Problem 5 

The Ito eq. (5) starts from the following initial condition 

��	, 0 = 20X� − 30X� coth��X	 , (23) 

and has the exact solution given in [18] by 

��	, � = 20X� − 30X� coth��X	 − 96X` + 	! , (24) 

Table 4. Comparison of numerical solutions of Lax equation (4) for the Test Problem 3.4. 

x/t 
t=0.2 t=0.8 t=5.0 

mVIA-I [18] mVIA-I [18] mVIA-I [18] 
2 
4 
6 
8 

10 

5.74774 ×10-14 

1.14220 ×10-13 

1.69509 ×10-13 

2.22649 ×10-13 

2.72984 ×10-13 

5.76197 ×10-14 

1.15281 ×10-13 

1.72985 ×10-13 

2.30730 ×10-13 

2.88518 ×10-13 

2.29909×10-13 
4.56882×10-13 
6.78036×10-13 
8.90596×10-13 

1.09193×10-13 

2.30342×10-13 
4.60727×10-13 
6.19153×10-13 
9.21621×10-13 

1.15213 ×10-12 

1.43692×10-12 
2.85550×10-12 
4.23772×10-12 
5.56622×10-12 

6.82460×10-12 

1.42104 ×10-12 
2.84213 ×10-12 
4.26326 ×10-12 
5.68444 ×10-12 

7.10566 ×10-12 
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Table 5. Comparison of numerical solutions of fKdV equation (6) for Test Problem 3.6. 

x/t 2E  4E  6E  

mVIA-I HPTM [35] mVIA-I HPTM [35] mVIA-I HPTM [35] 
0.1 
0.2 
0.3 
0.4 
0.5 

4.03000 ×10-07 

3.14615 ×10-06 

1.03656 ×10-05 

2.39942 ×10-05 

4.57809 ×10-05 

4.03001 ×10-07 

3.14615 ×10-06 

1.03656 ×10-05 

2.39942 ×10-05 

4.57809 ×10-05 

2.03168×10-10 
6.39581×10-09 
4.77886×10-08 
1.98186×10-07 

5.95330×10-07 

2.04000×10-10 
6.39800×10-09 
4.77890×10-08 
1.98186×10-07 

5.95333×10-07 

4.85726×10-14 
6.14129×10-12 
1.03657×10-10 
7.67223×10-10 

3.61487×10-09 

2.00000×10-12 
8.00000×10-12 
1.03000×10-10 
7.66000×10-10 

3.61500×10-09 

Table 6. Comparison of absolute errors of the mVIA-I and the Laplace decomposition method for sixth approximation for Test Problem 3.6. 

t/x 
x=1.0 x=1.5 x=2.5 

mVIA-I LDM [24] mVIA-I LDM [24] mVIA-I LDM [24] 
0.01 
0.02 
0.03 
0.04 
0.05 

0.00000 
8.88178 ×10-16 

1.19904 ×10-14 

8.79296 ×10-14 

4.19229 ×10-13 

4.38198 ×10-11 

7.22467 ×10-11 

1.19114 ×10-10 

1.96387 ×10-10 

3.23787 ×10-10 

0.00000 
8.88178×10-16 
1.95399×10-14 
1.43884×10-13 
6.90114×10-13 

3.32204×10-10 
5.47711×10-10 
9.03023×10-10 
1.48883×10-09 

2.45467×10-09 

3.55271×10-15 
3.55271×10-15 
4.97379×10-14 
3.94351×10-13 

1.87405×10-12 

4.25802×10-09 
7.02029×10-09 
1.15745×10-08 
1.90831×10-08 

3.14627×10-08 

Table 7. Comparison of numerical solutions of Kawahara equation (7) for the Test Problem 3.7. 

x/t mVIA-I HPTM [35] 
0.1 
0.2 
0.3 
0.4 
0.5 

3.76856 ×10-09 

4.10160 ×10-08 

1.70439 ×10-07 

4.67929 ×10-07 

1.01400 ×10-06 

1.64944 ×10-06 

6.67437 ×10-06 

1.51864 ×10-05 

2.72977 ×10-05 

4.31169 ×10-05 

where coth�z  means the hyperbolic cotangent function. The numerical results generated using mVIA-I on the Test Problem 3.5 are 
reported graphically in Fig. 4. This figure shows the comparison of the approximate and the exact solutions of the Test Problem 3.5 
for � = 10 and X =  0.01. 
3.6. Test Problem 6 

Consider the following fifth order KdV eq. (6) 

���� + � ���	 − � ����	� + ����	� = 0, (25) 

which fulfils the initial condition 

��	, 0 = F* . (26) 

The exact solution of the fKdV eq. (25) with the condition (26) was given in [35] by 

��	, � = F*b2. (27) 

The numerical simulation for different values of times� and 	 of the Test Problem 3.6 using the mVIA-I are carried out in Table 5 
and Table 6. Table 5 shows the comparison of the numerical results of the mVIA-I and the homotopic perturbation transform 
method (HPTM) from [35]. Numerical results in Table 5 are expressed in term of absolute errors for second (E2), fourth (E4) and sixth 
(E6) order approximations. As the order of approximation increases, the order of accuracy increases and generated results converge 
to the exact solution. Therefore, numerical results show the efficiency and reliability of the mVIA-I method for different values of 	 and �. Table 6 comprises the comparison of the numerical results of the mVIA-I and the Laplace decomposition method [24]. 

3.7. Test Problem 7 

Consider the Kawahara eq. (7) 

���� + � ���	 + ����	� − ����	� = 0, (28) 

satisfying the initial condition 

��	, 0 = 105169 sech` n	 − 	!2√13 p, (29) 

where sech�z  is the hyperbolic secant function. The exact solution to the eq. (28) with the condition (29) was given in [35] by: 

��	, � = 105169 sech` q 12√13 n	 − 	! + 36�169pr. (30) 

 

Fig. 5. Absolute error graphs for Test Problem 3.7. 
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To demonstrate the applicability and efficiency of our modified algorithm, we report the absolute errors for different values of 	 
and � in Table 7. From the tabulated data, one can observe that the numerical and exact solutions by mVIA-I for the Kawahara eq. 
(7) for different time levels with 	 = 6.0, are in good agreement for the second-order approximation. Also, it is observable that the 
absolute errors generated by mVIA-I are much smaller than the corresponding absolute errors of the HPTM methods from [35]. 
Graphs included in Fig. 5 are evident confirmation of this observation. 

4. Conclusion 

This paper shows that the mVIA-I is very proficient, reliable and practically well suited for use in finding new traveling wave 
solutions for the higher-order differential equations. The reliability and accuracy of the method, as well as the decrease in the size 
of computational work, give this modified algorithm a more extensive pertinence. The results demonstrate that the algorithm is 
reliable, effective and gives more accurate solutions with respect to known methods. This modified algorithm facilitates 
computational work for solving nonlinear problems arising in applied sciences and engineering. High-accuracy solutions can be 
achieved in a few iterations of the proposed method compared to earlier techniques reported in the literature. We hope that the 
obtained results will be useful for further studies in scientific material science and engineering. 
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