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Abstract. Several applications of computational science and engineering, including population dynamics, optimal control, and 
physics, reduce to the study of a system of second-order boundary value problems. To achieve the improved solution of these 
problems, an efficient numerical method is developed by using spline functions. A non-polynomial cubic spline-based method is 
proposed for the first time to solve a linear system of second-order differential equations. Convergence and stability of the 
proposed method are also investigated. A mathematical procedure is described in detail, and several examples are solved with 
numerical and graphical illustrations. It is shown that our method yields improved results when compared to the results 
available in the literature. 

Keywords: Linear System, Second-order boundary-value problems, Numerical approximation, Cubic non-polynomial spline, 
Convergence analysis, Error analysis. 

1. Introduction 

Many problems in science, engineering, and mathematics can be reduced to solving systems of equations with notable 

examples in modeling and simulation of physical systems, and the verification and validation of engineering designs [1]. These 

systems of boundary value problems (BVPs) with different types of boundary conditions (BCs) are powerful tools to define many 

realism matters and so, constitute a very interesting topic for researchers. Modeling of real world problems into various orders of 

system of BVPs can be often seen in the field of population dynamics, brine tank cascade, compartment analysis, pond pollution, 

chemo stats, irregular heartbeats and lidocaine, flow of nutrient in an aquarium, forecasting prices, boxcars, electrical network, 

coupled spring-mass systems, logging timber by helicopter, earthquake effects on buildings, etc. [2].  

In recent times, second order system of BVPs has been considered by several researchers. They have put much effort to solve 

these problems numerically and developed some efficient and accurate methods. For instance, second-order linear and non-

linear systems were studied by Geng and Cui [3] in the reproducing kernel space, whereas Dehghan et al. [4] and Gamel [5] 

presented a sinc-collocation method to solve them. Lu in [6] introduced an analytical method based on the variational iterations 

to obtain the approximate solution of this system of second order BVPs. Over again, Laplace homotopy analysis was instituted by 

Bataineh and his team [7] as well as Ogunlaran et al. [8] to solve the system of non-linear differential equations.  

Due to ever widening range of applications and mathematical consequences of spline functions, solution of BVPs using them 

has been an active field for researcher [9]. They have sufficiently closely been approximated to systems of BVPs by spline 

functions based approaches as well. For example, Dehghan et al. [10] used B-spline scaling functions and obtain the solution of 

the non-linear system of second-order BVPs. Caglar et al. applied collocation method with B-splines to solve the second order 

system of BVPs [11]. Khuri and Sayfy [12] used same approach and acquired the result for a generalized system of BVPs. Heilat et 

al. [13] employed extended cubic B-spline based scheme and solve the linear case of above discussed problem. A singular 

boundary value problem was solved by Goh and his group [14] with extended cubic uniform B-spline functions based method. 
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Fig.1. System of two masses and two springs 
 
In this work, we study the solution of the following linear system of second-order BVPs: 

1 2 3 4 5 1

1 2 3 4 5 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

u x a x u x a x u x a x v x a x v x a x v x f x

v x b x v x b x v x b x u x b x u x b x u x f x

′′ ′ ′′ ′+ + + + + =

′′ ′ ′′ ′+ + + + + =
 (1) 

subject to 

(0) (1) 0, (0) (1) 0,u u v v= = = =  (2) 

where 0 ≤ x ≤ 1, f1 (x) and f2 (x) are given functions and aj(x) and bj(x), for j = 1, 2, 3, 4, 5 are continuous.  Here, we emphasize that 
the coupled system of second-order BVPs is just a special case of our anticipated problem (1)-(2). A coupled spring-mass system is 
one of the very simple and prevalent applications involving above considered system. A schematic diagram is shown in Figure 1, 
illustrates the coupling of simple oscillators where two blocks of weight m1 and m2 are attached with two springs. x1 and x2 are 
the elongations of each spring from equilibrium and k1, k2 are the spring constants. [15]. The detailed explanation of the existence 
of solution for these systems can be easily found in [16]-[19]. It is quite considered that on the specified interval, the proposed 
system (1)-(2) have unique solutions.  

From above we can perceive that a number of different techniques like reproducing kernel, sinc-collocation, variational 
iteration, laplace homotopy analysis along with B-spline collocation method have been projected to obtain the solution of the 
system of second-order BVPs, for linear and non-linear cases both. Here, we propose an efficient numerical method generated by 
non-polynomial cubic splines to attain the solution of the proposed system (1)-(2). Our solution methodology is based on the 
development of an algorithm that is formed by exponential and trigonometric cubic spline functions, which solves the 
deliberated problem efficiently. Present method is developed by means of following function space: 

{ }

( ) ( )

3

2 3

( ) 1, , , sin( ) ,

2 6
1, , , sin( ) ,

kx

kx

T x Span x e kx

Span x e kx kx kx
k k

=

    = − −      

 (3) 

where k is the frequency of the non-polynomial functions. It follows that if k → 0, T3 reduces to Span{1, x, x2, x3} [20].The present 
combination of function space was also considered by Chaurasia et al. [21] to solve the fourth order system of BVPs, but with 
quintic non-polynomial splines. 

Here, we have organized our work in this way. We have deliberated the development of a non-polynomial spline method in 
section 2. In section 3, detailed solution methodology is discussed for the solution of linear second-order system of BVPs. 
Convergence and stability analysis of the proposed method are given in section 4 and 5, respectively. In section 6, three examples 
are solved to verify the practicality of our developed scheme with graphical depictions. Section 7 concludes the study with 
remarks. 

2. Development of Non-polynomial Spline Method 

Set a framework of an equally spaced partition of an interval [a, b], dividing into N equal sections as a= x0 < x1 < x2 < ……… < xN 
= b, h= b-a/N. Our spline functions P1j (x) and P2j (x) hold the following structures in every section of the interval: 

( )

1 1 2 3 4( ) sin ( ) ( ) , 0,1,2,......, ;jk x x

j j j j j j jP x c k x x c e c x x c j N
−

= − + + − + =  (4) 

( )

2 1 2 3 4( ) sin ( ) ( ) , 0,1,2,......, ,jk x x

j j j j j j jP x d k x x d e d x x d j N
−

= − + + − + =  (5) 

where, cij, and dij; i=1,2,3,4 are constants and k is free parameter, which can be real or purely imaginary. Functions P1j(x) and P2j (x), 
which interpolate S(x) and s(x), respectively at xj and reduce to cubic splines as k → 0. Let u(x) and v(x) be the exact solutions of (1). 
Sj and sj be approximation to uj= u(xj) and vj= v(xj) respectively, obtained by the segment P1j(x) and P2j (x) of the spline functions 
passing through the points (xj, Sj), (xj+1, Sj+1) and (xj, sj), (xj+1, sj+1). Then our proposed mixed splines are defined by the functions S(x) 
= P1j(x) and s(x) = P2j (x); j = 0, 1, 2,…,N. Now, we assume 

1 1 1 1

(2) (2)
1 1 1 1

( ) , ( ) ,

( ) , ( ) ,

j j j j j j

j j j j j j

P x S P x S

P x M P x M

+ +

+ +

= =

= =
 (6) 
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and 

2 2 1 1

(2) (2)
2 2 1 1

( ) , ( ) ,

( ) , ( ) ,

j j j j j j

j j j j j

P x s P x s

P x m P x m

+ +

+ +

= =

= =
 (7) 

to get the following value of coefficients 

1 1 22 2

1 1

3 42 2 2

1 1
, ,

sin

2 1
( ) , ,

j j j j j

j j j j j

j j j j j

c e M M c M
k k

S S M M e M
c x c S M

h k h k h k

θ

θ

θ
+

+ +

   = − =      

− +
 = + − = −   

  

and 

1 1 22 2

1 1

3 42 2 2

1 1
, ,

sin

2 1
( ) , ,

j j j j j

j j j j j

j j j j j

d e m m d m
k k

s s m m e m
d x d s m

h k h k h k

θ

θ

θ
+

+ +

   = − =      

− +
 = + − = −   

  

 
where, j=0,1,….,N and θ=kh. At the knots, apply the first derivative continuity of spline functions to acquire the following 
relations: 

2
1 1 1 12 , 1, 2,...., 1j j j j j jS S S h M M M j Nα β γ− + − +

 − + = + + = −    (8) 

and 

2
1 1 1 12 , 1, 2,...., 1,j j j j j js s s h m m m j Nα β γ− + − +

 − + = + + = −    (9) 

where 

{ }

{ }

2

2

2

[ sin( ) cos( ) sin( ) (1 2 )] / sin( ),

[2 sin( ) sin( ) cos( ) ] / sin( ),

[ sin( )] / sin( ),

e e

e e

θ θ

θ θ

α θ θ θ θ θ θ

β θ θ θ θ θ θ θ

γ θ θ θ θ

= + + −

= − − +

= −

  

Equations (8)-(9) provides us a system of 2N-2 linear algebraic equations in the 2N-2 unknowns Sj and sj, for j = 1, 2,….., N-1. As k→0, 

1 / 6,α= 4 / 6β= and 1 / 6,γ = then our schemes (8)-(9) reduce to the cubic spline scheme [22]. 

The local truncation errors T1j and T2j, for j=1, 2,…, N-1 can be written as: 

{ } { }(2) (3) (4)2 3 4 5
1

1 1
1 ( ) ( ) ( ) ( ).

12 2j j j jT h u h u h u O hα β γ α γ α γ= − + + + − + − + +  (10) 

and 

{ } { }(2) (3) (4)2 3 4 5
2

1 1
1 ( ) ( ) ( ) ( ).

12 2j j j jT h v h v h v O hα β γ α γ α γ= − + + + − + − + +  (11) 

Equation (10) designs the second order methods for various choices of parameters α, β and γ, where α+β+γ=1 and α=γ in the 
following way: 

Case (i): For α =1/6, β=4/6 and γ =1-α-β, the truncation error 

(4)4 5
1

1
( ).

12j jT h u O h
 = − +  

  

Case (ii): For α =1/8, β= 6/8, the truncation error  

(4)4 5
1

1
( ).

24j jT h u O h
 = − +  

  

Case (iii): α =1/18, β=16/18, the truncation error  

(4)4 5
1

1
( ).

36j jT h u O h
 = +  

  

 
In the same way, we can obtain the truncation errors for scheme (9) by using Eq. (11). 

3. Composite Non-Polynomial Spline Solution for Linear System of Second Order BVPs 

To illustrate the development of an approximation for Eq. (1), first we discretize it and get the following form: 
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(2) (2)
1 2 3 4 5 1

(2) (2)
1 2 3 4 5 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

j j j j j j j j j j j j

j j j j j j j j j j j j

u x a x u x a x u x a x v x a x v x a x v x f x

v x b x v x b x v x b x u x b x u x b x u x f x

′ ′+ + + + + =

′ ′+ + + + + =
 (12) 

Using Eqs. (6)- (7) replace second derivatives by exponential cubic spline function, which after simplification gives the value of Mj 
and mj:  

1 3 2 1 3 4 2 3 5 3 1 4 3 2 5

3 3

1
( ) ( ) ( ) ( ) ( ) ;

1j j j j jM f a f a a b u a a b u a b a v a b a v
a b

    ′ ′= − − − − − + − + −     − 
 (13a) 

and 

2 3 1 1 3 4 2 3 5 3 1 4 3 2 5

3 3

1
( ) ( ) ( ) ( ) ( ) ;

1j j j j jm f b f b b a v b b a v b a b u b a b u
a b

    ′ ′= − − − − − + − + −     − 
 (13b) 

where Mj = S(2)(xj) and mj = s(2)(xj); j= 1, 2,….., N-1. Following Jain [23], approximation of first derivatives of u (and v also) can be 
written as 

1 1 1 1 1 1

1 1

3 4 4 3
; ; .

2 2 2
j j j j j j j j

j j j

u u u u u u u u
u u u

h h h
+ − + − + −

+ −

− − + − + −
′ ′ ′= = =  (14) 

So, after replacing the terms Mj and mj and using Eq. (14) into the schemes (8)-(9), we get the system of equations for j =1, 2,…., N-1. 
This system can be written into the following matrix form: 

2 2
0 1 11 2 12 2 13 1 14 1

2 2
2 23 1 24 0 1 21 2 22 2

;
2 2

.
2 2

h h
A h B F B F S B F h B F s C

h h
B F h B F S A h B F B F s C

     + + + + =        

     + + + + =        

 (15) 

which can be represented by the matrix equation, such as 

,lAS C=  (16) 

where matrix A is given by 

11 12

21 22

.
A A

A
A A

 
 =
 
 

 (17) 

Each sub-matrix A11, A12, A21 and A22 are of order N-1, defined as follows: 

2 2
11 0 1 11 2 12 12 2 13 1 14

2 2
21 2 23 1 24 22 0 1 21 2 22

; ;
2 2

; .
2 2

h h
A A h B F B F A B F h B F

h h
A B F h B F A A h B F B F

= + + = +

= + = + +

 (18) 

Matrices C = [C1, C2]T; where C1= h2B1F15 and C2= h2B1F25. 

[ ]1 1 1 1 1 1, ,...., , , ,.....,
T

N NlS S S S s s s− −=   

and square matrices A0, B1 and B2 are given as below 

0 1

2 1 0 0

1 2 1

0 1 2 1 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...,

... ... ... ... ... ... ... ... ... ... ... ... ... ...

1 2 1

1 2

A B

β γ

α β γ

α β γ

α β γ

α β

   −
   
   −   
   −   
   = =   
   
   
   
   −
   
   −   

  

  

2

4 4 3 0

3 4 4 3

0 3 4 4 3

... ... ... ... ... ... ... .

... ... ... ... ... ... ...

3 4 4

B

α γ α β γ

α β γ α γ α β γ

α β γ α γ α β γ

α β γ α γ

 − − + +
 
 − − + − − + + 
 − − + − − + + 
 =  
 
 
 
 
 
 − − + − 

  

Matrices Fkl, for k= 1 and l=1, 2,3,4,5 can be defined as follows: 
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1 2

1 2 3

2 3 4

2 1

( ) ( ) 0 0

( ) ( ) ( ) 0

0 ( ) ( ) ( )

... ... ... ... ... ... ... . ,

... ... ... ... ... ... ...

... ... ... ... ...

( ) ( )

k l kl

k l k l k l

k l k l k l

kl

N Nk l kl

f x f x

f x f x f x

f x f x f x

F

f x f x− −

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 

  

where the terms used in the above matrices are defined as 

( ) ( )

( ) ( )

( )
( )

2 3 5 1 3 4

11 12

4 3 1 5 3 2

13 14

1 3 2

15 3 3

( ) ( ) ( ) ( ) ( ) ( )
( ) ; ( ) ;

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ; ( ) ;

( ) ( )

( ) ( ) ( )
( ) ; ( ) 1 ( ) ( ) ; 1,2,...

( )

j j j j j j

j j

j j

j j j j j j

j j

j j

j j j

j j j j

j

a x a x b x a x a x b x
f x f x

x x

a x a x b x a x a x b x
f x f x

x x

f x a x f x
f x where x a x b x j

x

ϕ ϕ

ϕ ϕ

ϕ
ϕ

− −
= =

− −
= =

−
= = − = ., 1.N−

  

Similarly, matrices Fkl, for k= 2 and l=1, 2,3,4,5 can be defined by swapping the functions a and b. For example,  

( )2 3 5

21

( ) ( ) ( )
( ) ,

( )

j j j

j
j

b x b x a x
f x

xϕ

−
=   

and so on. By substituting the value of A and C, simplify the system (15) and we get the tri-diagonal system of linear equations. 
On solving this system by using any suitable method, the solution matrix is attained. Thus, solution matrix Sl gives the 
approximations Sj and sj to the solution u(x) and v(x) at the points x1, x2 ,…., xN-1. 

4.  Convergence Analysis 

In this section, we examine our developed scheme in terms of convergence. We can write the error equation of the method 
(15) as 

AE=T, (19) 

where, E = (E1  E2) t, the error of discretization with E1j = uj – Sj, E2j = vj – sj, where E= U-S1, U= (uj, vj) and matrix A is according Eq.(17) 
and T= (T1j  T2j )t, for j = 1, 2,…..,N-1, the local truncation errors described in eqs. (10)- (11).                                             
Let us assume that B1Fij and B2Fij ≥ 0 in Eq. (18), for all i, j. So, the diagonal blocks A11 and A22 are invertible [24] and hold the 
following condition 

2 21* 1*(1 *)(1 ) (1 *) (1 ), d d d d+ + + + +<   

where,  

1 1
2 12 22 1 21 11* .d A A and d A A− −

∗∞ ∞
= =   

Then matrix A, defined in Eq. (17) is invertible and so A-1 exists. From Eq. (19) and norm inequalities, we have 

1 ,E A T−≤  (20) 

where matrix 1A− satisfies the following condition, according to Gil [24] 

( )1 1
11 22 2 1*1

2 21* 1*

max , .(1 *)(1 )
.

(1 *) (1 ) (1 *)(1 )

A A d d
A

d d d d

− −

−
+ +

≤
+ + + − + +

 (21) 

As 4( )T O h≤  and from the classifications of the matrices Akl; k, l=1, 2 defined in Eq. (18), we can have 

2( ).E O h≤  (22) 

From above, it follows that 0E → as 0h→ . So we can conclude that method (15) is second order convergent. 

5.  Stability Analysis 

Here, we will check the stability of our scheme (15) when applied to system (1)–(2). Introducing the separate perturbations 
δu(x) and δv(x) in the given system suppose the errors ej and ek have been occurred in the calculation of A and C respectively 
specified in Eq. (16). Let S1* be the solution of the perturbed system, then the above system (16) can be written as 

( ) *
1 kjA e S C e+ = +  (23) 

Let A is non-singular and also assume that 
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1

1
,

2
je

A−

      
<  (24) 

Then, A + ei is also non-singular and 

( )
1 12 .jA e A
−

−+ ≤  (25) 

From (16) and (23), it follows that 

( ) ( )
1*

1 1 1 kj jS S A e e S e
−

− = + −  (26) 

Also, from the definition of norm 

1

1
, ,

0
min ( )k kj j

j
N

k
j

A a a w say

−

−

∞
≠

≤ ≤

    − = ∞    

≤ <∑  (27) 

So, from (25), (26) and (27), we can have 

{ }*
1 1 12 ,kjS S w e S e

∞ ∞∞ ∞
− < +  (28) 

which shows that our scheme is stable. 

6. Results and Discussions  

To show the usefulness of our developed spline based scheme, we have solved three problems of linear system of second-
order BVPs. All computations, for these problems were carried out using Matlab software. 

 

6.1 Problem 1 

(2)
1

(2)
2

( ) ( ) ( ) ( ),

( ) 2 ( ) ( ) ( ),

u x xu x xv x f x

v x xv x xu x f x

+ + =

+ + =
 (29) 

subject to BCs 

1 1(0) (1) 0, (0) (1) 0, 0 1, ( ) 2 ( ) 2.u u v v where x f x and f x= = = = < < = =−   

The theoretical solution for u(x) and v(x) are given by 

2 2( ) ; ( ) .u x x x v x x x= − = −  (30) 

Numerical solution acquired by our method for two different choices of α, β and γ are given in Table 1 for N=21. Table 1 confirms 
that our method gives better accuracy than the methods obtained in [11] and [13]. 

Table 1. Maximum Absolute Errors for Problem 1 (N=21). 

 u(x) v(x) 

Our Method 
(α=γ=1/6, β =4/6) 

3.3×10−16 6.6×10−16 

Our Method 
(α=γ=1/8, β =6/8) 

3.0×10−16 1.1×10−16 

B-spline method[11] 3.4×10−15 1.8×10−15 

Extended cubic B-spline 
method [13] 

1.7×10−13 1.6×10−13 
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Fig.2 (a) & (b). Comparison of approximate values and exact values for Problem 1 at N=21. 
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Table 2. Maximum absolute errors, Problem 2. 

 
 

N=50 N=100 N=200 

Our Method 
 

u(x) v(x) u(x) v(x) u(x) v(x) 

α=γ=1/6, β =4/6 1.20×10−3 3.07×10−4 7.77×10−5 7.77×10−5 3.07×10−4 8.94×10−6 

α=γ=1/8,β =6/8 1.20×10−3 2.78×10−5 3.07×10−4 7.09×10−6 7.77×10−5 1.78×10−6 

α=γ=1/18,β =16/18 1.22×10−3 1.68×10−5 3.09×10−4 4.31×10−6 7.80×10−5 1.09×10−6 

 N=21 N=41 N=61 

 u(x) v(x) u(x) v(x) u(x) v(x) 

Our Method 
α=γ=1/18,β =16/18 

6.58×10−3 8.77×10−5 1.80×10−3 2.47×10−5 8.25×10−4 1.14×10−5 

B-spline method 
[11] 

1.89×10−3 9.60×10−5 4.74×10−4 2.40×10−5 2.10×10−4 1.07×10−5 
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Fig. 3 (a) & (b). Comparison of approximate values and exact values for Problem 2 at N=61. 

6.2 Problem 2 

( )(2) (1) (1)
1

(2)
2

( ) 2 1 ( ) cos( ) ( ) ( ),

( ) ( ) ( ),

u x x u x x v x f x

v x xu x f x

π+ − + =

+ =
 (31) 

subject to BCs 

2
1 2

(0) (1) 0, (0) (1) 0, 0 1,

( ) sin( ) (2 1)( 1)cos( ) ( ) 2 sin( ).

u u v v where x

f x x x x and f x x xπ π π π π

= = = = < <

=− + − + = +
  

The exact solution for u(x) and v(x) are 

2( ) sin( ), ( ) .u x x v x x xπ= = −  (32) 

The maximum absolute error and its comparison with B-spline method [11] for problem 2 are summarized in Table 2, at different 
values of N. 

6.3 Problem 3 

(2) (1) (1)
1

(2) (1) 2
2

( ) ( ) ( ) ( ) 2 ( ) ( ),

( ) ( ) 2 ( ) ( ) ( ),

u x u x xu x v x xv x f x

u x v x u x x u x f x

+ + + + =

+ + + =
 (33) 

subject to BCs 

2
1

2 3 2
2

(0) (1) 0, (0) (1) 0, 0 1,

( ) 2( 1) cos( ) cos( ) 2 sin( ) (4 2 4)sin( )

( ) 4( 1) cos( ) 2(2 )sin( ) ( 1)sin( ).

u u v v where x

f x x x x x x x x x and

f x x x x x x x

π π π

π π

= = = = < <

=− + + + + − −

=− − − − + − −

  

The exact solution for u(x) and v(x) are 

( ) 2(1 )sin( ), ( ) sin( ).u x x x v x xπ π= − =  (34) 

The maximum absolute errors for problem 3 are summarized in Table 3-4, at different values of N with comparison of results 
given in [3] and [4]. Thus, if we look at the results given in Tables 1-4, it is clear that our non-polynomial spline based method is 
convergent as accuracy improves, when we increase the number of mesh points. Our method is quite comparable with the 
methods suggested in [3], [4] and [11]. Even, for problem 1 our method gives pretty much better results than B-spline method 
proposed in [11] and [13]. Figures 2-4 have been depicted to demonstrate the numerical results for problems 1-3, respectively. 
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Table 3. Maximum absolute errors, Problem 3 (N=25). 

 
Reproducing kernel space 

[3] 
Sinc-collocation method [4] 

Our method 
(α = γ = 1/6, β = 4/6) 

x u(x) v(x) u(x) v(x) u(x) v(x) 

0.08 3.3×10−3 7.7 ×10−3 3.2×10−3 1.5×10−3 5.4×10−3 3.9×10−3 

0.24 7.7×10−3 2.2 ×10−2 9.4×10−4 7.0×10−3 1.3×10−3 8.5×10−4 

0.40 9.7×10−3 2.7 ×10−2 2.0×10−3 7.4×10−3 1.7×10−3 1.3×10−3 

0.56 9.5×10−3 2.7 ×10−2 2.2×10−4 1.0×10−2 4.1×10−3 2.9×10−3 

0.72 7.3×10−3 2.0 ×10−2 4.1×10−3 4.4×10−3 5.9×10−3 4.0×10−3 

088 3.4×10−3 9.4 ×10−3 1.0×10−2 2.1×10−2 7.0×10−3 4.7×10−3 

0.96 1.1×10−3 3.1 ×10−3 2.1×10−3 6.9×10−3 7.3×10−3 5.0×10−3 

Table 4. Maximum absolute errors, Problem 3. 
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Fig. 4 (a) & (b): Comparison of approximate values and exact values for Problem 3 at N=100 

7. Conclusions 

In this paper, a non-polynomial cubic spline-based method was proposed to find the approximation to the solution of a linear 
system of second-order BVPs. Convergence and stability analysis of the method were also discussed. It was verified by the 
numerical results that the problems were solved by the proposed approach effectively. This method is simple and produced 
commendable results when compared with the methods given in ([11], [13], and others) available in the literature. Our paper could 
contribute remarkably to this field as it leads to the possibility to apply non-polynomial spline functions as a robust tool to 
approximate the system of BVPs. This work can be extended to improve the existing computational error in the field of 
approximation of systems of different order of BVPs and, of course, to solve non-linear problems too. 
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 N=50 N=100 N=200 

Our Method u(x) v(x) u(x) v(x) u(x) v(x) 
 

α=γ=1/6,β =4/6 
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