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Abstract. An efficient frame model with inclusion of shear-flexure interaction is proposed here for nonlinear analyses of columns 
commonly present in reinforced concrete (RC) frame buildings constructed prior to the introduction of modern seismic codes in 
the Seventies. These columns are usually characterized as flexure-shear critical RC columns with light and non-seismically 
detailed transverse reinforcement. The proposed frame model is developed within the framework of force-based finite element 
formulation and follows the Timoshenko beam kinematics hypothesis. In this type of finite element formulation, the internal 
force fields are related to the element force degrees of freedom through equilibrated force shape functions and there is no need 
for displacement shape functions, thus eliminating the problem of displacement-field inconsistency and resulting in the locking-
free Timoshenko frame element. The fiber-section model is employed to describe axial and flexural responses of the RC section. 
The modified Mergos-Kappos interaction procedure and the UCSD shear-strength model form the core of the shear-flexure 
interaction procedure adopted in the present work. Capability, accuracy, and efficiency of the proposed frame element are 
validated and assessed through correlation studies between experimental and numerical responses of two flexure-shear critical 
columns under cyclic loadings. Distinct response characteristics inherent to the flexure-shear critical column can be captured 
well by the proposed frame model. The computational efficiency of the force-based formulation is demonstrated by comparing 
local and global responses simulated by the proposed force-based frame model with those simulated by the displacement-based 
frame model. 

Keywords: Timoshenko frame element, Shear-flexure interaction, Fiber frame element, Seismic nonlinear analysis, Forced-based 
formulation, Flexure-shear critical column. 

1. Introduction 

Reinforced concrete (RC) has been widely used as construction material for several engineering structures due to its low cost 
but high efficiency [1]. Especially in developing countries, most of frame structures have been constructed by RC materials. 
Columns in RC frame structures are often regarded as the most critical load-bearing component and their losses of load-bearing 
capacities can lead to severe structural damages or even collapses of whole structures. Therefore, seismic responses of columns 
are critical to good performance of RC frame buildings during an earthquake event. However, a large stock of existing RC frame 
buildings had been constructed prior to the mid-1970s. As a result, these RC frame buildings fail to meet modern seismic codes 
and their columns are typically considered as “non-ductile” columns with inadequate and non-seismically detailed transverse 
reinforcement [2]. As evidenced in post-earthquake reconnaissance [3-6], these columns experienced severe damage and 
performed unsatisfactorily during the seismic events. Several researchers have conducted both experimental and computational 
research work to characterize behaviors of this column type [7-13].  The strong coupling between sectional shear and flexural 
actions has been confirmed by many experimental evidences to be a key factor to characterize behaviors of this column type [14-
16]. It has been observed that shear strength capacity of the column section was degraded within the plastic hinge regions even 
though the transverse reinforcement did not reach the yielding state and the shear failure was triggered subsequent to flexural 
yielding of the column section. Biskinis et al. [17] defined this column type as the “flexure-shear” critical column. The diagnosis of 
the detriment of inelastic flexural deformations on the column-section shear strength is associated with the reduction in the 
concrete shear-strength contribution triggered by aggregate interlocking. This shear-transfer mechanism is jeopardized by 
opening of flexural-shear cracks caused by inelastic flexural deformations within the plastic-hinge region. Several researchers 
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have proposed various flexural deformation-dependent shear strength models to account for the sectional shear-flexure coupling 
effect [18-19].    

Along with advances in computer technology, a nonlinear frame model has become more and more popular among structural 
engineers and plays a crucial role in analyzing, designing, and assessing both existing and newly constructed structures under 
extreme loadings (e.g. destructive earthquakes). This is especially necessary with the recently adopted performance-based design 
and assessment methodology [20]. Therefore, the nonlinear frame model can be used as an effective tool to quantify seismic-risk 
level of existing non-seismic designed RC frame buildings for upcoming seismic events. This is crucial to prioritization procedure 
in seismic rehabilitation programs since it is impossible to rehabilitate all existing non-seismic designed buildings to meet 
current seismic design codes due to economical limitation and service interruption. However, a standard nonlinear frame model 
considering only inelastic flexural actions cannot be used to characterize the seismic performance of flexure-shear critical 
columns in existing non-seismic designed frame buildings due to lack of sectional shear-flexure coupling effects. Therefore, an 
efficient nonlinear frame model capable of interacting shear with flexural actions, accounting for inelastic shear responses, and 
identifying failure modes is required and this is the main focus of the present work. 

In order to incorporate shear actions into nonlinear frame models for seismic analyses of RC frame structures, a diversity of 
frame models have been proposed by several researchers with various degrees of complexities. As discussed in the state-of-the-
art report by Ceresa et al. [21-22], nonlinear frame models considering shear actions can be categorized into two groups, namely: 
the non-distributed inelastic frame model and the distributed inelastic frame model. 

The first group accounts for shear actions by introducing shear-springs at member ends [23-27] and is often referred to as the 
“non-distributed” inelastic frame model. However, this model type can represent inelastic responses only at member ends, thus 
failing to capture gradual spread inelasticity.  

To remedy the limitation inherent to the first group, the second group introduces inelastic responses within the plastification 
zone (plastic-hinge length) or injects inelastic responses into the model at the section level. As a result, this model type is often 
referred to as the “distributed” inelastic frame model. Due to the salient feature of this model type, a large number of distributed 
inelastic frame models have been proposed by several researchers [21, 28-32]. For example; Mergos and Kappos [32-33] proposed 
the distributed inelastic frame model using the subelement concept of Soleimani [28] and the shear-flexure interaction was 
triggered through the flexural deformation-dependent shear strength model. Subsequently, Zimos et al. [34] enhanced the frame 
model of Mergos and Kappos [32-33] with the ability to predict the onset of axial failure for non-ductile RC columns. The above-
mentioned frame models could present well several intrinsic features of non-ductile RC columns, namely: the coupling effect 
between shear and flexure, degradation of shear resistance with increasing sectional curvature ductility, and gradual spread 
inelasticity. However, these models required pre-defined hysteretic moment-curvature curves and could not consider the axial-
flexure interaction in a natural manner.  

To remedy the aforementioned drawbacks, the fiber-section model [35] has been incorporated into nonlinear frame models to 
consider the axial-flexure interaction in a natural manner [36-38]. Several researchers have further enhanced the fiber-based 
nonlinear frame models with the ability to account for the shear-flexure interaction. For example, Marini and Spacone [39] 
employed equilibrium requirement at the element level to couple shear with flexural actions within the framework of the force-
based Timoshenko frame formulation. Even though this frame model was very accurate and could represent the distinct features 
of non-ductile RC columns, the employed shear constitutive law must be calibrated on a case-by-case basis [22]. Some researchers 
have further elaborated the fiber-based nonlinear frame models using sophisticated multi-dimensional constitutive models to 
include the effects of shear-flexure interaction. For example, Ceresa et al. [40] incorporated the Modified Compression Field 
Theory (MCFT) proposed by Palermo and Vecchio [41] into the displacement-based Timoshenko frame model to account for shear 
responses at the section level. Along the same line, Mullapudi and Ayoub [30] armed the force-based Timoshenko frame model 
with the ability to account for sectional shear responses using the softened membrane model (SMM) proposed by Hsu and Zhu 
[42]. Feng et al. [43] enhanced the displacement-based fiber frame element with the interaction between shear and flexure using 
the multi-axial softened damage-plasticity model [44]. Subsequently, Feng et al. [45] incorporated the multi-axial softened 
damage-plasticity model [44] into the force-based fiber frame element to account for the shear-flexure coupling effects. Even 
though these models are very accurate and able to rigorously represent the effects of shear-flexure interaction at the section level, 
the usage of these models has been limited among practicing structural engineers due to several constraints, namely: high 
implementation effort, sophisticated multi-dimensional constitutive law, high computational cost, and complicated model input 
parameters. A nonlinear frame model serving as a computational tool in seismic assessment procedures for existing RC frame 
buildings must be friendly to practicing structural engineers and adequately accurate. Such a frame model has been recently 
proposed by Sae-Long et al. [13] and its accuracy and performance have been assessed by correlation studies between 
experimental and numerical responses of non-ductile RC columns under cyclic loadings. This frame model belongs to a family of 
displacement-based fiber Timoshenko frame models and the shear-flexure interaction procedure modified from Mergos and 
Kappos [32-33] was employed to account for the adverse effects of inelastic flexural deformation on the sectional shear strength. 
However, computational efficiency of this frame model was limited due to inherent drawback of displacement-based finite 
element formulation. To reduce the gap between simplicity, accuracy, and efficiency of frame models for seismic analyses of non-
ductile RC columns, the force-based finite element formulation is considered a promising choice.  

Up to date, the force-based finite element formulation has gained growing interests in establishing a more efficient 
computational platform for inelastic analyses of structures and has been proven to be able to remedy several flaws inherent in 
the standard displacement-based finite element formulation [45-48]. The enhanced performance of the force-based frame model 
is due to the merits of employed force shape functions. These merits stem from two main observations: i) in certain structural 
elements, the internal force distributions along the element domain can be determined exactly, thus resulting in the “exact” finite 
element model; and ii) along the element domain, the internal force distributions are generally smoother than the internal 
deformation distributions which drastically vary across the inelastic regions (e.g. plastic hinge). Consequently, the objective of the 
present work is to develop a more effective frame element with shear-flexure interaction. This can be achieved by incorporating 
the shear-flexure interaction procedure modified from Mergos and Kappos [32-33] into the force-based finite frame formulation. 

The content of the paper is presented as follows. First, a set of basic equations (strong form) of the Timoshenko frame element 
is introduced. Second, the virtual force principle is employed to formulate the force-based Timoshenko frame element (weak 
form). The classical Tonti’s diagram [49] is modified and employed to conveniently present the weak form of the proposed frame 
element. Next, the sectional shear constitutive for non-ductile RC columns and the shear-flexure interaction procedure are 
presented. The modified Mergos-Kappos interaction procedure and the so-called “UCSD Shear-Strength Model” proposed by Priestley 
et al. [18] form the core of the shear-flexure interaction procedure adopted in the present work. Finally, capability, accuracy, and 
efficiency of the proposed frame element are validated through correlation studies between experimental and numerical 
responses of two non-ductile RC columns under cyclic loadings. The implementation of the proposed element is conducted in the 
general-purpose finite element platform FEAP [50]. 
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2. A Set of Basic Equations (Strong Form) 

2.1 Equilibrium 

The free-body diagram of an infinitesimal part dx cut from the Timoshenko frame member is shown in Figure 1 and employed 

to derive the system equilibrium. Under the transverse distributed load ( )yp x , the axial, bending, and transverse equilibriums of 

this infinitesimal part yield the following relations: 

( )
= 0TBdN x

dx
 (1) 

( )
( )+ = 0TB

TB

dM x
V x

dx
 (2) 

( )
( )+ = 0TB

y

dV x
p x

dx
 (3) 

where ( )TBN x , ( )TBM x , and ( )TBV x  present the frame sectional axial force, bending moment, and shear force, respectively. The 

subscript   appended to each variable denotes that the proposed element employs the Timoshenko beam theory to describe the 
kinematics of the frame section. 

For the sake of conciseness, eqs. (1), (2), and (3) are arranged into the matrix form as: 

( ) ( )− =T
TB TB x xL D p 0  (4) 

in which 

( ) ( ) ( ) ( ){ }

( ) ( ){ }
=

= 0 0

T

TB TB TB TB
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x N x M x V x

x p x

D

p
 (5) 

The frame sectional force vector ( )TB xD  contains the sectional axial force, bending moment, and shear force while the 

element distributed load vector ( )xp  contains only the transverse distributed load ( )yp x  in the present study. The differential 

operator TBL  in eq. (4) is defined as: 

 
 
 
 
 
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 
 
 − 
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0 1

TB

d

dx
d

dx
d
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L  (6) 

From the equilibrium requirement of eqs. (1), (2), and (3), it is clear that this system is statically determinate because there are 
three internal unknown forces and there are three available equilibrium equations. Therefore, the number of equilibrium 
equations are sufficient to compute all internal forces, and this is a key feature to derive equilibrated force shape functions. 

2.2 Compatibility 

The conjugate work pair of the frame sectional force vector ( )TB xD  is the frame sectional deformation vector ( )TB xd  which 

can be defined as: 

( ) ( ) ( ) ( ){ }ε ϕ γ=
T

TB TB TB TBx x x xd  (7) 

 

where ( )εTB x , ( )ϕTB x , and ( )γTB x  are, respectively, the sectional axial strain, the bending curvature, and the shear strain of the 

Timoshenko frame element. 

Similar to the frame sectional deformation vector ( )TB xd , the sectional displacement vector ( )xu  can be defined as: 

( ) ( ) ( ) ( ){ }θ=
T

TB TB TBx u x x v xu  (8) 

 

where ( )TBu x , ( )θTB x , and ( )TBv x  represent the axial displacement at reference axis, the rotation, and the transverse 

displacement, respectively. 
Following the kinematics assumption of the Timoshenko beam theory, the deformation-displacement relations of the frame 

element (compatibility condition) can be expressed as: 

( )
( )

ε = TB
TB

du x
x

dx
 (9) 

( )
( )θ

ϕ = TB
TB

d x
x

dx
 (10) 
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γ θ= − TB
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dv x
x x

dx
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Fig. 1. Infinitesimal part dx of a frame member under transverse load ( )yp x . 

The matrix form of eqs. (9), (10), and (11) can be written as: 

( ) ( )=TB TBx xd L u  (12) 

It could be observed that the equilibrium equation of eq. (4) corresponds to the compatibility equation of eq. (12) via the 

differential operator TBL , thus confirming the contragradient nature between equilibrium and compatibility conditions. 

2.3 Sectional Force-Deformation Relations 

The relations between sectional forces and sectional deformations of an RC frame element depend on the material properties, 
cross-section geometries, and behaviors of the constituent materials. Generally, these nonlinear relations can be expressed in 

terms of the nonlinear functions [ ]Ψ ...  as: 

( ) ( ) =  ΨTB TBx xD d  (13) 

The force-deformation relations of eq. (13) can be expressed in a linearized incremental form as: 

( ) ( ) ( ) ( )= + ∆0 0
TB TB TB TBx x x xD D k d  (14) 

where ( )0
TB xD  represents the frame sectional force vector; and ( )0

TB xk  is the stiffness matrix of the frame element. The 

superscript 0 appended on each symbol indicates the initial point of a vector or matrix during the iterative solution process. 
In the present work, the fiber-section model [37] is employed to subdivide the frame cross-section into several discrete fibers 

(layers) as shown in Figure 2. With the fiber-section model, the axial and flexural actions are automatically coupled. Thus, the 

axial force ( )TBN x  and bending moment ( )TBM x  are obtained using the sectional axial-force and sectional moment equilibrium 

conditions as: 

( ) ( )σ σ
= =

= =−∑ ∑
1 1

and
nfib nfib

TB n n TB n n n
n n

N x A M x y A  (15) 

where σn , nA  and ny  are, respectively, the normal stress, the area, and the perpendicular distance from the x - axis of the nth 

fiber in the section; n indicates the generic fiber; and nfib is the number of fibers in the section. 

Following the sectional axial force and bending moment expressions of eq. (15), the frame sectional force vector ( )TB xD  of eq. 

(5) can be rewritten as: 

( ) ( )σ σ
= =

   = −    
∑ ∑

1 1

Tnfib nfib

TB n n n n n TB
n n

x A y A V xD  (16) 

From the frame sectional force vector ( )TB xD  of eq. (16), it can be observed that the axial ( )TBN x  and flexural ( )TBM x  

actions depend on the normal stress σn  varying along the section height following the fiber-section model while the shear 

action ( )TBV x  is constant along the section height following the Timoshenko beam theory [51]. Thus, one-fiber discretization is 

sufficient to represent the sectional shear response. 
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Fig. 2. Fiber-section model for RC sectional response [37]. 
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Fig. 3. Uniaxial constitutive laws for constituent materials in RC section [13]. 

Based on the fiber-section model, the frame sectional stiffness matrix ( )TB xk  can be defined as: 

( )

= =

= =
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x y E A y E A
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k  (17) 

where nE  and sGA  represent the sectional modulus of the nth fiber and the sectional shear stiffness, respectively. The frame 

sectional stiffness matrix ( )TB xk  of eq. (17) demonstrates that shear action does not couple with axial and flexural actions in a 

direct manner. However, the shear and flexural responses are related through the adopted sectional shear strength model 
proposed by Priestley et al. [18] and will be discussed subsequently. 

To describe the nonlinear response of an RC frame section, this study uses three uniaxial cyclic constitutive laws, namely: 
Kent and Park model [52] for concrete; Menegotto and Pinto model [53] for reinforcing steel bars; and modified Mergos and 
Kappos model [13] for sectional shear response. Primary response curves of each constitutive model are shown in Figure 3. 

As required in the force-based finite element formulation, the frame sectional flexibility matrix ( )TB xf  can be obtained from 

consistent inverse of the frame sectional stiffness matrix ( )TB xk , thus resulting in the following expression: 

( ) ( ) ( ) ( )= + ∆0 0
TB TB TB TBx x x xd d f D  (18) 

3. Force-Based Finite Frame Formulation 

3.1 Formulation 

The present work adopts the general framework of the force-based frame element formulation and its implementation 
procedure originally proposed by Spacone et al. [36] and subsequently modified by Limkatanyu and Spacone [46]. In this type of 

finite element formulation, the sectional forces ( )TB xD  serving as primary variables are determined directly from the element 

nodal forces through equilibrated force shape functions. Consequently, the element equilibrium requirement of eq. (4) is satisfied 
in a point-wise sense. The element compatibility requirement of eq. (12) is expressed through the weighted residual statement. As 
a result, the element compatibility requirement is enforced in an integral sense. The summarized framework of the proposed 
force-based frame element formulation is presented in the modified Tonti’s diagram of Figure 4 [49]. 

The compatibility condition of eq. (12) is written in the weighted residual form as:  

( ) ( ) ( )δ  − =  ∫ 0T
TB TB TB

L

x x x dxD d L u  (19) 

where δ ( )TB xD  is the statically admissible virtual section force vector. Substituting the linearized deformation-force relations of 

eq. (18) into eq. (19) leads to: 
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( ) ( ) ( )δ  + ∆ − =  ∫ 0 0 ( ) ( ) 0T
TB TB TB TB TB

L

x x x x x dxD d f D L u  
(20) 

In order to move the differential operator TBL  from the displacement vector ( )xu  to the virtual force vector δ ( )TB xD , 

integration by parts is applied to eq. (20), leading to the following expression: 

( ) ( )

( ) ( )
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δ δ

δ δ

∆ +

 
 
 = +  
 
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�������������

0 0( ) ( ) ( )T T
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L L

T
TB TB

L x

x x x dx x x dx

x x dxT

p

D f D D d

P U u L D

 (21) 

where the scalar-product term δ TP U  resulting from the integration by parts represents the end-boundary complementary 

virtual work done by the virtual basic nodal forces δP  on the basic nodal displacements U . Clearly, eq. (21) defines the 
complementary virtual work expression of the system. The terms on the left-hand side of eq. (21) represent the complementary 

internal virtual work δ int

*W  while the terms on the right-hand side represent the complementary external virtual work δ *
extW . 

Recalling the equilibrium condition of eq. (4) and arbitrarily selecting the virtual element distributed load vector ( )δ =xp 0 , eq. 

(21) becomes: 

( )δ δ δ∆ = −∫ ∫0 0( ) ( ) ( ) ( )
T T

TB TB TB TB TB

L L

x x x dx x x dxTD f D P U D d  
(22) 

eq. (22) represents the core expression of the proposed force-based frame formulation and will be subsequently discretized to 

obtain the finite element equation. The discrete form of eq. (22) can be obtained by expressing the sectional forces ( )TB xD  in 

terms of the element nodal forces without rigid-body modes (basic element nodal forces) P  using equilibrated force shape 

functions. The interpolation relation between the sectional forces ( )TB xD  and the basic element nodal forces P  can thus be 

written as: 

−=( ) ( )F B
TB TBx xD N P  (23) 

where the matrix − ( )F B
TB xN  contains equilibrated force shape functions. The superscript −F B  emphasizes the force-based finite 

frame formulation. For the adopted simply-supported system shown in Figure 5, the force-shape function matrix − ( )F B
TB xN  is: 

−

− − −

− −
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2 3
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F B
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F B F B F B
TB TB TB

F B F B
TB TB

x
x x

x x x
L L

d x d x

dx dx L L

N  (24) 

It is worth emphasizing that with these force shape functions, the equilibrium condition of eq. (4) is enforced in a point-wise 
manner. The element flexibility equation can be gained by substituting eq. (23) into eq. (22) and subsequently accounting for the 

arbitrariness of δP , thus resulting in: 

∆ = −0 0( )TB rxF P U U  (25) 

where ( )( )− −= ∫0 0( ) ( ) ( )F B T F B
TB TB TB TB

L

x x x x dxF N f N  represents the element flexibility matrix. 

The element nodal displacements 0
rU  in eq. (25) are weakly compatible with the frame section deformations 0 ( )TB xd  through 

the following integral expression: 

( )( )−= ∫0 0 ( )
TF B

r TB TB

L

x x dxU N d  (26) 

It is worthwhile to remark that the term − 0
rU U  on the right-hand side of eq. (25) represents the residual element nodal 

displacements and corresponds to the integral statement of compatibility condition of eq. (12). During the incremental-iterative 
solution process, this residual vector will vanish once the element section deformations are compatible with the element nodal 
displacements. 

In the present study, the general-purpose finite element platform FEAP [50] is employed to host the proposed frame element. 
The platform architect of FEAP is constructed within the framework of stiffness-based finite element formulation, thus rendering 
FEAP natural to the stiffness-based finite element model. To implement the proposed force-based frame element into the 
platform of displacement-based finite element software, rigid body modes must be injected and filtered out during the element 
state determination process. Thus, the rigid-body-mode transformation matrix RBMT  is required between the systems with and 

without rigid body modes. This study adopts the simply-supported system to eliminate the rigid body motions as shown in Figure 
6. The transformation relations between the element nodal forces, element nodal displacements, and element stiffness matrices 
with respect to systems with and without rigid-body modes are given as: 

=

=

=

T
RBM

RBM

T
RBM RBM

P T P

U T U

K T KT

 
(27) 
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Fig. 4. Modified Tonti’s diagram for RC frame element: Force-based formulation (Weak form). 

 

Fig. 5. Equilibrated force shape functions associated with simply-supported (basic) system. 

 

Fig. 6. Element force and displacement degrees of freedom: (a) Complete system; and (b) Basic system.  

In addition to the transformation relations of eq. (27), a special procedure for the element state determination is required for 
the proposed frame element formulated within the framework of flexibility-based finite element model. The state-of-the-art 
procedure for implementing the flexibility-based finite element model into the stiffness-based computational platform was 
proposed by Spacone et al. [54] and Limkatanyu and Spacone [55]. This procedure is adopted in the present work and is briefly 
discussed herein.  

For a given current nodal displacement increment, the current nodal force increment is computed using the initial (previous 
iterative step) element stiffness matrix and is used to update the nodal force vector. Then, the current section force increment 
associated with the current nodal force increment is computed using the force shape functions and the section force vector is 
updated accordingly. Next, the current section deformation increment associated with the current section force increment is 
computed using the initial (previous iterative step) section flexibility matrix and the section deformation vector is updated 
accordingly. With the updated current section deformation vector, the associated section force vector and the associated section 
stiffness (flexibility) matrix can be obtained via the section constitutive relations. Generally, the current section force vector 
obtained from the section constitutive relations is not in equilibrium with the current nodal force vector, thus resulting in an 
unbalanced section force vector and the associated residual section deformation vector. The residual nodal displacement vector is 
computed from the residual section deformation vector using the integral expression of element compatibility. Finally, the 
unbalanced nodal force vector is computed from the residual nodal displacement vector and is passed from the element level to 
the structural level during the incremental-iterative solution process. More details on the above-discussed element state 
determination procedure can be found in Spacone et al. [54] and Limkatanyu and Spacone [55]. 
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Fig. 7. Undamaged (primary) envelope curve for sectional shear response [13]. 

4. Sectional Shear Constitutive Law 

4.1 Undamaged Primary Curve 

The relation between the sectional shear force and shear strain in the present work stems from the undamaged primary 
curve shown in Figure 7. Originally, this curve was presented by Mergos and Kappos [32-33] and later modified by Zimos et al. [34] 
and Sae-Long et al. [13]. 

On the curve, there are four parts with three different slopes. The first part with a linear portion oa and slope ( )
0

GA  shows 

the uncracked behavior of reinforced concrete and connects the origin point o to the point a ( γ,cr crV ) at which the sectional 

concrete starts cracking. The point a is associated with the stress state at which the nominal principal tensile stress reaches the 

nominal tensile strength of concrete. To compute the cracking shear force crV , the uncracked shear slope ( )
0

GA , and the 

cracking shear strain γcr , Sezen and Moehle [19] proposed the following expression: 

( )

( )

( )
γ

    = +      

=

=

'

'

0

0

1 0.80
/

0.80

t
cr g

a t g

g

cr
cr

f N
V A

L h f A

GA GA

V

GA

 (28) 

where '
tf  is the nominal tensile concrete strength; /aL h  is the shear span ratio; gA  is the gross cross sectional area; and G  

is the concrete shear modulus.  

The second part with a linear portion ab and slope ( )
1

GA  represents the sectional shear response between the cracking point 

a ( γ,cr crV ) and the first plastic-hinge formation point b ( γ,y yV ). The point b is associated with the state at which the longitudinal 

reinforcement experiences yielding for the first time. This point is detected with the fiber-section model.  

The third part with a linear portion bc has the same slope as the second part ( )
1

GA  and represents the sectional shear 

response after the plastic hinge is triggered. This part links the flexural-yielding point b ( γ,y yV ) to the point c ( γ0 ,u stV ) at which 

the sectional shear force attains its ultimate value 0uV  while the shear strain reaches the value at the onset of transverse 

reinforcement yielding γst . To determine the sectional shear strength, this study employs the so-called “UCSD Shear-Strength 

Model” proposed by Priestley et al. [18]. The UCSD shear strength 0uV  is: 

( )ϕ β= + +' 0
0 0.8 cot30 tanv yv

u c g

A f D
V k f A N

s

'

 
(29) 

where '
cf  is the concrete compressive strength; ϕk  is a reduction factor for the concrete shear-strength contribution and is a 

function of the flexural curvature ductility ϕµ  as shown in Figure 8; s  is the spacing of transverse reinforcement; vA  is the 

cross-section area of the transverse reinforcement; yvf  is the yield strength of the transverse reinforcement; N  is the member 

axial force; D '  is the distance measured parallel to the applied shear between centers of the longitudinal reinforcement; and β  

is the angle between the member axis and the line connecting the centers of the flexural compression zones at the top and the 
bottom of the column ends. 

The shear strain at the onset of transverse reinforcement yielding γst  can be determined using the truss analogy approach 

[56]. However, the resulting value of shear strain γst  did not coincide well with values obtained from experimental results. 

Subsequently, Mergos and Kappos [32-33] enhanced this approach with two modification factors based on regression analysis. 
The first factor κ  considers the axial-load effect while the second factor λ  accounts for the member-aspect ratio effect. The 

shear strain γst  is thus modified as: 

γ κλ γ=st truss  (30) 
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Fig. 8. Relationship between imposed curvature ductility ϕµ  and concrete shear strength reduction factor contribution ϕk  [32]. 

where κ = − '1 1.07( / )c gN f A  is the axial-force modification factor; ( )λ = −5.37 1.59 min 2.5, /aL h  is the modification factor 

associated the member-aspect-ratio; and γtruss  represents the shear strain corresponding to the transverse reinforcement 

yielding as computed from the truss analogy approach [56] and is defined in eq. (31) as: 

( )
γ ψ ρ

ρ ψ ψ

  = + +   
4

4

0

sin
sin cot

v yvcr s
truss w

s w c

A fV E

GA sE b E
 (31) 

where sE  and cE  define respectively the elastic moduli for steel and concrete; b  is the sectional width; ρw  represents the 

volumetric ratio of the transverse reinforcement; and ψ  is the angle between the member reference axis and the line of diagonal 

struts. The optimal value of angle ψ = 045  in this study follows the research work by Mergos and Kappos [32]. 

Finally, the last part with a flat-top linear portion cd presents the plastic sectional shear response. This part connects the 
shear-yielding point c ( γ0 ,u stV ) to the ultimate point d ( γ0 ,u uV ) at which the shear strain attaints its ultimate value γu . This part 

of the sectional shear response is in compliance with experimental evidences that the shear strain of shear-critical and flexure-
shear critical RC columns could further increase even after yielding of transverse reinforcement until they reach the failure state 
[14-17, 32, 57-60]. Thus, the value of the shear strain γu  could be larger than the value of the yielding shear strain γst . Based on 

regression analyses of 25 RC shear-critical and flexure-shear critical columns, Mergos and Kappos [32] suggested the following 
expression for γu : 

γ λ λ λ γ γ= ≥1 2 3u st st  (32) 

The ultimate shear strain γu  is computed based on the yielding shear strain γst  using three modification factors, namely: 

( )λ = − '
1 1 2.5 min 0.4, / c gN f A  accounting for the axial-load effect; ( )λ = 2 2

2 min 6.25, /aL h  considering the member aspect ratio; 

and ( )λ = + '
3 0.31 17.8 min / ,0.08v yv cA f bsf  taking into account the amount of transverse reinforcement. 

4.2 Modified Mergos-Kappos Shear-Flexural Interaction Procedure 

The strong coupling between shear and flexural actions in RC columns has long been noticed in the structural engineering 

research community. Several research work has been conducted both experimentally and analytically to demonstrate the 

detrimental effect of inelastic flexural deformations on the sectional shear capacity [15-18, 32, 33, 61]. This shear-flexure 

interaction is particularly critical in characterizing the response of non-ductile RC columns.  

In the present work, the so-called “modified Mergos-Kappos” shear-flexure interaction procedure is adopted and incorporated 

into the proposed force-based frame model. This shear-flexure interaction procedure originally proposed by Mergos and Kappos 

[32-33] was modified and employed by Sae-Long et al. [13] with success to account for the shear-flexure interaction effect for non-

ductile RC columns. For the sake of self-containment, general description of the modified Mergos-Kappos shear-flexure 

interaction procedure is repeated herein. 

Figure 9 presents a big picture of the modified Mergos-Kappos shear-flexure interaction procedure and the evolution of the 

reduced shear envelope curve with increasing curvature ductility ϕµ . As dictated in the UCSD shear-strength model [18], 

reduction in the sectional shear strength is associated with degradation of the concrete shear-strength component 

( )ϕ= ' 0.8c gc k f AV  appearing in eq. (29). The sectional shear response starts to deviate from the undamaged envelope curve once 

the shear strength degradation is triggered. The damaged (reduced) envelope curve is kept updating with the evolution of the 

degraded shear strength and the resulting envelope curve is along the response path ′ ′ ′− − − − − − − −g go a b e f g h c d .  

For a given incremental sectional shear strain γ∆ , the sectional shear state determination process computes the shear force 

increment ∆V  and the effective sectional shear stiffness ( )
eff

GA . In the modified Mergos-Kappos shear-flexure interaction 

procedure [13], the reference shear stiffness ( )kref i
GA  is proposed and defined as: 

( )
γ

+ −
=

∆

1
0,
k k

k i

ref ki
i

V V
GA  (33) 
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Fig. 9. Schematic representation of modified Mergos-Kappos shear-flexure interaction procedure [13]. 

where γ γ+ += + −1 1
10, ( ) ( )k k

cr cri iV V GA  represents the sectional shear force with no degradation associated with the increasing 

curvature ductility demand; and γ γ γ+ = +∆1k k k
i i  is the current shear strain. 

Considering the geometric relation between the sectional shear strain increment γ∆ k
i  and the sectional shear force 

increment ∆ k
iV  leads to the following expression: 

( )
( )

( )
γ

∆ + ∆∆
∆ = =

deg kkk
cik i i

i k k

eff refi i

V VV

GA GA
 (34) 

where ( )∆ deg k

c i
V  is the degraded part of the shear force corresponding to the concrete shear strength degradation and can be 

expressed as: 

( ) ( ) γ γ
γ γ

 −  ∆ = ∆ − ∆   − 
deg

k k
k k k kui

c ref i ikii
st

V V
V GA  (35) 

where k
uiV  is the curvature ductility-dependent shear strength and is a function of a reduction factor ϕk . 

Solving eq. (34) for the effective sectional shear stiffness ( )keff i
GA  leads to the following expression: 

( )
( )

( )∆
=
∆ + ∆ deg

k
k ki

eff refki ik
ci i

V
GA GA

V V
 (36) 

It is noticed in eq. (36) that the effective sectional shear stiffness ( )keff i
GA  and the sectional shear force increment ∆ k

iV  are 

unknown and mutually dependent. Therefore, an additional iterative procedure is required within the element iterative step i  of 

the load increment k  and an iterative index “ j ” is appended to variables ( )keff i
GA  and ∆ k

iV . It is worth remarking that the 

following variables ( )kref i
GA , ( )∆ deg k

c i
V , and γ∆ k

i  do not vary during this additional iterative process. The step-by-step algorithm 

to determine the effective sectional shear stiffness ( )
,

k

eff i j
GA  and the current sectional shear force +1k

iV  within the modified 

Mergos-Kappos shear-flexure interaction procedure is shown in Figure 10.  More details of the modified Mergos-Kappos shear-
flexure interaction procedure can be found in Sae-Long et al. [13]. 

4.3 Hysteretic Law of the Sectional Shear Response 

In the present study, hysteretic law of the sectional shear constitutive model follows the one presented in Sae-Long et al. [13]. 
This adopted hysteretic law is modified from the general hysteretic model proposed by Filippou et al. [62] and later modified by 
Martino [63]. Generally, this hysteretic shear model is very attractive since it represents well the pinching effect and damage 
corresponding to the shear resisting mechanism. The general feature of the adopted shear hysteretic model is shown in Figure 11 
and its brief description is worth repeating herein for the sake of self-containment. 

In Figure 11, the shear response starts from the unloaded state at point O. Then, the section is loaded along the monotonic 

branch O-A-B until it reaches the unloading state along the branch B-C with the uncracked stiffness ( )
0

GA . This unloading state 

continues until it touches the abscissa axis at point C. Then, the reloading state is triggered along the branch C-D-E in the opposite 
direction. During the reloading branch C-D-E, the section encounters the crack closing process before it connects to the monotonic 

envelope branch D-E. Unloading state takes place at point E with the uncracked stiffness ( )
0

GA  and continues until it touches 

the abscissa axis at point F. Then, the reloading state starts from point F along the branch F-G-H in the opposite direction. The 
section experiences the crack closing process, thus resulting in the pinching response along the reloading branch F-G-H. Finally, 
the branch H-I-J continues to the failure point J. More details on the adopted shear hysteresis model can be found in Martino [63] 
and Sae-Long et al. [13]. 
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Fig. 10. Iterative algorithm for calculating effective sectional shear stiffness ( )keff i
GA  based on modified Mergos-Kappos shear-flexure interaction 

procedure [13]. 

 

Fig. 11. Cyclic behavior of sectional shear force-shear strain response. 

5. Model Validation 

To verify performance and accuracy of the proposed frame element and to investigate influences of the coupling effect 
between shear and flexure on both global and local responses, correlation studies on two non-ductile RC columns under cyclic 
loadings are carried out. Both columns are considered as flexure-shear critical members, which eventually fail in shear after 
experiencing flexural yielding. For each proposed frame element, the element cross-section is discretized into forty fibers (layers) 
to obtain the sectional force-deformation response and five Gauss-Lobatto integration points are used for the element numerical 
integration. 
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Fig. 12. Column specimen 2CMH18 [7]. 

 

                                     (a)                                                                    (b) 

Fig. 13. Experimental and numerical responses of column specimen 2CMH18: (a) Shear-flexure interaction models; and (b) Flexural model. 

5.1 Column 2CMH18 

Lynn [7] tested a group of square cross-section RC columns subjected to reversed lateral displacements and a constant axial 
load. Details and amounts of column longitudinal and transverse reinforcement are intended to represent columns constructed 
before the 1970’s. Therefore, these column specimens were considered as columns with seismically-substandard reinforcing 
details.  

In the present study, one of these column specimens, column 2CMH18, is selected to examine the performance and accuracy 
of the proposed element and to demonstrate the essence of considering the shear-flexure interaction effect. The material 
properties, reinforcement details, and geometry of this column specimen are shown in Figure 12. 

Figure 13 compares the experimental lateral load-displacement response with numerical lateral load-displacement responses 

obtained with three frame models, namely: i) the proposed force-based frame model; ii) the displacement-based frame model by 

Sae-Long et al. [13]; and iii) the flexural frame model by Spacone et al. [36]. In Figure 13 (a), only four proposed force-based frame 

elements are sufficient to resemble the salient characteristics of the experimental force-displacement response including the 

general shape of hysteretic response, the amount of dissipated hysteretic energy, and the member capacity. It is noted that 

column 2CMH18 was employed to validate the displacement-based frame model proposed by Sae-Long et al. [13]. To satisfactorily 

resemble the force-displacement response of this column, sixteen displacement-based frame elements of Sae-Long et al. [13] 

were required as shown in Figure 13 (a), thus confirming the superiority of the proposed force-based frame model over the 

displacement-based frame model. The lateral displacement −∆F B
y  and the sectional shear strain γ −F B

y  associated with the 

plastic-hinge formation are −∆ = 8.13 mmF B
y  and γ − −= 31.13 10F B

y x  as predicted by the proposed force-based frame model. These 

values correspond well with those predicted by sixteen displacement-based frame elements of Sae-Long et al. [13]; namely: 
−∆ = 8.30 mmD B

y  and γ − −= 31.21 10D B
y x . The ultimate lateral displacement −∆ = 15.21 mmF B

u  associated with the ultimate shear 

strain γu  is predicted by the proposed force-based frame model and complies well with that obtained from experiment 

(∆ = 15.30 mmExp
u ). To emphasize the essence of shear-flexure interaction effect on characterization of non-ductile RC columns, 

the flexural frame model by Spacone et al. [36] is also employed to analyze column 2CMH18 and the resulting numerical response 

is shown in Figure 13 (b). Even though the flexural frame model can represent well the general shape of hysteretic response, the 

amount of dissipated hysteretic energy and the member capacity, the “flexure-shear” critical feature inherent to column 2CMH18 

cannot be accounted for. 
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                                     (a)                                                                     (b) 

 

                                     (c)                                                                     (d) 

Fig. 14. Sectional shear responses along column specimen 2CMH18: Proposed force-based model vs. displacement-based model. 

 

Fig. 15. Column specimen 2CLD12 [15]. 

Figure 14 presents the hysteretic shear responses at various positions along the column height (Section I, II, III, and IV) 

obtained with the proposed force-based frame model, together with those obtained with sixteen displacement-based frame 

elements by Sae-Long et al. [13]. Comparison between the two frame models confirms accuracy of the proposed force-based 

frame model in representing the local (sectional) responses. It is observed that the shear response in Section I locating inside the 

plastic-hinge region drastically differs from those at all other section positions resting outside the plastic-hinge region due to the 

shear-flexure interaction. As shown in Figure 14 (a), the sectional shear response at Section I starts to deviate from the 

undamaged envelope curve when the sectional curvature ductility ϕµ  reaches its threshold value of 3 as governed by the UCSD 

shear-strength model. On the other hand, Section II, III and IV (respectively in Figure 14 (b), (c) and (d)) response cyclically with 

respect to the undamaged envelope curve and behave almost identically. This observation stems from the fact that shear-flexure 

interaction is not triggered at those sections since they are outside the plastic-hinge zone. 
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                                     (a)                                                                      (b) 

Fig. 16. Experimental and numerical responses of column specimen 2CLD12: (a) Shear-flexure interaction models; and (b) Flexural model. 

 

                                     (a)                                                                      (b) 

 

                                     (c)                                                                      (d) 

Fig. 17. Sectional shear responses along column specimen 2CLD12: Proposed force-based model vs. displacement-based model. 

5.2 Column 2CLD12 

Sezen [15] tested a set of four full-scale columns representing existing columns with insufficient transverse reinforcement 

and poor seismic resistance details. These columns were tested in double bending action under cyclic lateral displacements and 

subjected to a constant axial load. One of the column specimens labeled column 2CLD12 is selected here to validate the proposed 

force-based frame element and to demonstrate the influence of inelastic bending deformations on sectional shear response. 

Mergos and Kappos [33] and Sae-Long et al. [13] also employed this column specimen to verify their frame elements with 

inclusion of shear-flexure interaction. Material properties, reinforcement details, and dimensions of this column provided by 

Sezen [15] are shown in Figure 15. 

Figure 16 compares the experimental lateral load-displacement responses with numerical lateral load-displacement 

responses obtained with three frame models, namely: i) the proposed force-based frame model; ii) the displacement-based frame 

model by Sae-Long et al. [13]; and iii) the flexural frame model by Spacone et al. [36]. Figure 16 (a) indicates that only four 

proposed force-based frame elements can present well several features of the experimental result. These features are the initial 
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stiffness, the general shape of the hysteretic response, the member capacity, and the amount of dissipated hysteretic energy. To 

obtain the same level of accuracy, sixteen displacement-based frame elements by Sae-Long et al. [13] were, thus emphasizing 

superiority of the proposed force-based frame model over the displacement-based frame model. As predicted by the proposed 

force-based frame model, the lateral displacement −∆F B
y  and the sectional shear strain γ −F B

y  associated with plastic-hinge 

formation are −∆ = 13.3 mmF B
y  and γ − −= 31.45 10F B

y x , respectively. These predicted values are in close agreement with those 

predicted by the displacement-based frame model of Sae-Long et al. [13]; namely: −∆ = 13.8 mmD B
y  and γ − −= 31.58 10D B

y x . The 

ultimate lateral displacement −∆ = 28.15 mmF B
u  associated with the ultimate shear strain γu  is predicted by the proposed force-

based frame model and is in good agreement with that obtained from experiment (∆ = 28.0 mmExp
u ).  

To bring out necessity of the shear-flexure coupling effect in predicting the column failure mode, column 2CMH18 is also 

analyzed by the flexural frame model of Spacone et al. [36] and the resulting numerical response is plotted in Figure 16 (b). 

Generally, the flexural frame model resembles well the salient features of hysteretic response of column 2CMH18 up to the onset 

of shear failure (∆ = 28.0 mmExp
u ) but fails to detect the column shear failure. Therefore, the failure mode of column 2CMH18 

would not have been in shear had the flexural model been employed. 

Figure 17 demonstrates the hysteretic shear responses at various positions along the column height (Section I, II, III, and IV) 

obtained with the proposed force-based frame model, superimposed with the hysteretic sectional shear responses obtained with 

sixteen displacement-based frame elements of Sae-Long et al. [13]. Comparison between sectional shear responses obtained with 

these two frame models confirms the accuracy of the proposed force-based frame model in representing the local (sectional) 

responses. Due to restrained conditions, plastic hinge can only form at each end column (Section I). As shown in Figure 17(a), the 

shear response at Section I drastically differs from shear responses at all other sections (Figure 17(b) - (d)) locating outside the 

plastic-hinge region due to the shear-flexure interaction. At Section I, the shear response starts to deviate from the undamaged 

envelope curve once the sectional curvature ductility ϕµ  attains its threshold value of 3 as dictated in the UCSD shear-strength 

model. On the other hand, Sections II - IV response cyclically with respect to the undamaged envelope curve and behave nearly 

identically. Even though all column sections are subjected to the same value of shear force as governed by the equilibrium 

condition, Section I experiences much larger shear strain and eventually fails in shear at the ultimate value of γ −= × 312 10u . 

6. Conclusion 

A force-based frame model with inclusion of shear-flexure interaction for seismic analyses of non-ductile reinforced concrete 

(RC) columns was presented in this work. Model formulation was conducted within the framework of virtual force principle. The 

sectional force fields were related to the element force degrees of freedom through equilibrated force shape functions. The frame-

section kinematics followed the Timoshenko-beam hypothesis. The proposed frame model was not subjected to the “shear-locking” 

problematic phenomenon since there was no need for displacement-field approximations in the model formulation, thus 

eliminating the problem of displacement-field inconsistency. To demonstrate the big picture of the force-based finite element 

formulation, the modified Tonti’s diagram was presented. One-dimensional models incorporated into the fiber-section model 

were employed to describe hysteretic responses of concrete, steel, and sectional shear force. The so-called “modified Mergos-

Kappos” interaction procedure was adopted to account for the sectional shear-strength degradation associated with the inelastic 

flexural deformation. Evolution of the sectional shear-strength degradation with the inelastic flexural deformation followed the 

UCSD shear-strength model. With respect to validity of the model, correlation studies between experimental and numerical 

responses of flexure-shear critical RC columns under cyclic loadings revealed that the proposed force-based frame model could 

resemble well the salient features of the experimental force-displacement responses including the general shape of hysteretic 

response, the amount of dissipated hysteretic energy, and the member capacity. Sectional shear failure subsequent to plastic-

hinge formation can accurately be captured by the proposed force-based frame model. This shear-failure mode involving 

sectional shear deterioration and rapid increase of the sectional shear strain subsequent to the plastic-hinge formation complied 

well with experimental observation. When the numerical simulation was conducted using the flexural model, necessity of 

accounting for the shear-flexure interaction was further emphasized. With respect to efficiency of the model, comparisons 

between numerical results obtained with the proposed force-based frame model and the displacement-based frame model of 

Sae-Long et al. [13] showed that a relatively coarse mesh of four proposed force-based frame elements can accurately reproduce 

both global and local responses obtained with a fine mesh of sixteen displacement-based frame elements by Sae-Long et al. [13], 

thus confirming superiority of the proposed force-based model over the displacement-based model.  

A step forward on this study is to extend the shear constitutive model for prediction of softening behaviors of non-ductile RC 

structures under cyclic loading. This concept will be of benefit to seismic analyses of existing RC frame buildings in the future. 
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