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Abstract. The problem of unsteady Stokes flow of certain Newtonian fluids in a circular pipe of uniform cross section is discussed. 
The pipe is uniformly porous. The unsteady Navier-Stokes equations for the system in cylindrical polar coordinates have been 
solved analytically to obtain a complete description of the flow. The solution of the flow equations subject to the slip boundary 
conditions leads to the detailed expressions for axial and radial components of velocity and the pressure distribution depending 
on position coordinates and time. As a special case we have presented the situation when no-slip boundary conditions are 
implemented. The velocity profile is analyzed for different values of the flow parameters like Womersley number, slip length and 
time. 
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1. Introduction 

Stokes flow or creeping motion is the flow of fluids where viscous forces are highly dominating as compared to the inertial 
forces resulting low Reynolds number Re<<1. In such situations, fluid velocities are very small and viscosity is high. Initially such 
types of flows were studied in order to understand the process of lubrication of engines. Stokes flows also occur in nature in 
swimming of microorganism and sperm and flow of lava. The equations governing such flows are called Stokes equations and are 
linearized form of the well-known Navier-Stokes equations. 

In this paper we have considered a porous circular pipe in which a laminar flow occurs and the fluid layer in contact with the 
wall of the pipe has some non-zero velocity. At the same time there is periodic suction or injection of the fluid through the pores. 
There are many real-life applications that correspond to laminar flow through various porous geometries. One of such 
applications is the modeling of transpiration cooling process in which a cooling fluid is injected in order to protect the walls of a 
certain engine from the heat. 

The problem of laminar flow through a porous channel was firstly studied by Abraham S. Berman in 1953 [1]. He considered 
the flow through a rectangular channel. There was uniform suction through the upper face and uniform injection through the 
lower face of the channel. Berman investigated in detail the effect of wall porosity on the two-dimensional steady-state 
incompressible laminar flow of a fluid by solving Navier-Stokes Equations. After that many attempts have been made to solve 
such type of problems subject to various conditions. In [5], authors studied Berman’s problem for a non-Newtonian fluid. In [3], 
authors encountered the Stokes and Couette flows produced due to oscillatory motion of a wall. In such situations no-slip 
condition is no longer valid. In [6], Ganesh studied unsteady Stokes flow through a channel of parallel porous plates when there is 
periodic suction through the lower plate and periodic injection through the upper plate. Kirubhashankar et al. [2] slightly 
modified this problem for an unsteady MHD flow between two parallel plates when an external uniform field is applied parallel to 
the plates. In [4] the authors considered Stokes flow of a Newtonian fluid through a porous pipe of uniform circular cross section 
with no-slip boundary conditions. 

In this paper we have considered the problem of Stokes flow of Newtonian fluid through a uniformly porous pipe. The Navier 
slip condition is widely used by many authors ([3], [7], [10] and references in these articles) which states that the relative velocity 
of the fluid with the wall is proportional to the shear rate at the wall. Mathematically this can be expressed as 

( , ) u
u

u x R w r r a
λ
∂

− =
∂ =

  

where u
W

 is velocity of the wall, a is radius of pipe and λ  is slip parameter known as “slip length”. In this article we have used 

Navier slip condition at the wall and observed that there are significant changes in the flow behavior with the change in the value 
of the slip parameter. The Solution is analyzed for different other flow parameters as well. We have presented the no-slip Stokes 
flow problem studied in [4] as a particular case in this paper. 
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Fig. 1. Schematic diagram the system 

2. Problem Formulation 

   We consider a pipe of uniform circular cross section having infinite length and a Newtonian fluid passes through the pipe. The 
flow satisfies following assumptions: 

  
• Flow is unsteady and axisymmetric with negligible body forces.  
• Stokes flow is assumed. Due to very small Reynolds number the governing equations are simplified by neglecting the 

convective forces.  
• The walls of the pipe are uniformly porous.  

• The suction or injection occurs periodically through walls with velocity 0
i tv e ω .  

• Fluid layer in contact with walls of the pipe has some non-zero velocity called “slip velocity”.  
 

In such a situation cylindrical polar coordinates ( , , )r xθ  are best suited, where X-axis is along the axial axis of pipe and r  denotes 

radial distance from X-axis. Due to axial symmetry θ  coordinate vanishes. We chose velocity vector U
�

 and pressure P  in the form 

{ }ˆ ˆ= ( , ) ( , ) ,i tu x i v x j e ωξ ξ+U
�

 (1) 

= ( , ) ,i tP p x e ωξ  (2) 

where = / , (0 1)r aξ ξ≤ ≤  and a  is radius of the pipe. The equations governing the flow are as given as follows [4] 

x -Component:  

2 2

2 2 2 2

1 1 1
= ,

p u u u
i u

x x a a
ω ϑ

ρ ξ ξ ξ

 ∂ ∂ ∂ ∂ − + + +   ∂ ∂ ∂ ∂
 (3) 

r -Component:  

2

2 2

1 1 1
= ( ) ,

p v
i v v

a x a
ω ϑ ξ

ρ ξ ξ ξ ξ

  ∂ ∂ ∂ ∂  − + +      ∂ ∂ ∂ ∂
 (4) 

 
Continuity:  

( ) ( )
1

= 0,u v
x a
ξ ξ

ξ

∂ ∂
+

∂ ∂
 (5) 

where u  and v  are respectively the velocity components in x  and r  direction of the flow field. The boundary conditions of the 

flow at any time t  are 

1

( ,1) = ,
u

u x
ξ

λ
ξ

=

∂
∂

 (6) 

0

= 0,
u

ξ
ξ

=

 ∂    ∂
 (7) 

( ,0) = 0,v x  (8) 

0( ,1) = .v x v  (9) 
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3. Solution of the Problem 

   We introduce the stream function ψ  as follows so that the continuity eq. (5) is identically satisfied 

2

1
( , ) = ,u x

a

ψ
ξ

ξ ξ

∂
∂

 (10) 

1
( , ) = .v x

a x

ψ
ξ

ξ

∂
−

∂
 (11) 

We write the stream function ψ  as the product 

( , ) = ( ) ( ).x g x hψ ξ ξ  (12) 

Equations (10) and (11) reduce to 

2

1
( , ) = ( ) ( ),u x g x h

a
ξ ξ

ξ
′  (13) 

1
( , ) = ( ) ( ).v x g x h

a
ξ ξ

ξ
′−  (14) 

The boundary conditions of the problem together with the knowledge of inlet conditions to the pipe gives rise to an expression 

for ( )g x  

2
0

0

1
( ) = ,

(1) 2

a u
g x av x

h

  −   
 (15) 

where 0u  is the average axial velocity of fluid at the entrance of pipe and is given as 

0

1

0

= 2 (0, ) .u u dξ ξ ξ∫  (16) 

Further let 

( )
( ) = ,

(1)

h

h

ξ
φ ξ

ξ

′
 (17) 

and 

0

( ) 1
( ) = = ( ) .

(1)

h
t t dt

h

ξ
ξ

ξ φ
ξ ξ

Φ ∫  (18) 

Using eq. (15), eq. (17) and eq. (18) we get the the velocity components as follows 

( )0 0( , ) = ( ),
2

u xv
u x

a
ξ φ ξ−  (19) 

and 

0( , ) = ( ).v x vξ ξΦ  (20) 

The stream function reduces to 

2
0

0( , ) = ( ).
2

a u
x av xψ ξ ξ ξ

  − Φ  
 (21) 

In above equations the function ( )φ ξ  is still to be determined. It is worth to briefly specify here that radial velocity component v  

has become function of " "ξ  only. Using eq. (19) and eq. (20) in eq. (3) and eq. (4) we have 

( )0 0
2

( )1
= ( ) ( ) ,

2

u xvp
iw

x a a

ϑ φ ξ
φ ξ φ ξ

ρ ξ

′  ∂   ′′− − − +      ∂
 (22) 

and  

0
0 2 2

( ) ( )1
= ( ) ( ) .

vp
i v

a a

ξ ξϑ
ω ξ ξ

ρ ξ ξ ξ

′ Φ Φ∂  ′′− Φ − Φ + −   ∂
 (23) 

From here and onward we use the notations φ  and Φ  respectively instead of ( )φ ξ  and ( )ξΦ  in order to make the expressions simple. 

Differentiate eq. (22) with respect to ξ  to get 

( )
2

0
0 2 2

1
= .

2

up x
v iw

x a a

ϑ φ φ
φ φ

ρ ξ ξ ξ

′′ ′  ∂  ′ ′′′− − − + −      ∂ ∂
 (24) 
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Also differentiate eq. (23) with respect to x  to get 

21
= 0.

x

ρ

ρ ξ

∂
−
∂ ∂

 (25) 

Equating the results of eq. (24) and eq. (25) we have 

( )0
0 2 2

= 0,
2

u x
v i

a a

ϑ φ φ
ωφ φ

ξ ξ

′′ ′   ′ ′′′− − + −      
 (26) 

since this is to be satisfied for all x , therefore 

2 2
= 0,i

a

ϑ φ φ
ωφ φ

ξ ξ

′′ ′ ′ ′′′− + −   
 (27) 

with the substitution 

2 = =
i iω ρ ω

β
ϑ µ

 eq. (27) becomes 

2 2
2

= 0,a
φ φ

β φ φ
ξ ξ

′′ ′ ′ ′′′− + −   
 (28a) 

or 

2 2
2

1
= 0.a

φ
φ β φ

ξ ξ

′′  ′′′ ′+ − +   
 (28b) 

Following boundary conditions on functions φ  and Φ  are obtained using eq. (19), eq. (20) and prescribed boundary conditions eq. 

(6) to eq. (9) 

(1) = (1), (0) = 0, (0) = 0, (1) = 1φ λφ φ′ ′ Φ Φ  (29) 

We have the third order linear ordinary differential equation eq. (28) subject to the boundary conditions eq. (29). The general 
solution of eq. (28) is easily obtained in terms of Modified Bessel functions as 

1 2 0 3 0( ) = ( ) ( ).c c I a c K aφ ξ βξ βξ+ +  (30) 

where ( )I xα  and ( )K xα  are Modified Bessel functions of first and second kind respectively. These functions are defined as 

2

0

1
( ) = ,

! ( 1) 2

m

m

x
I x

m m

α

α
α

+∞

=

    Γ + +∑   

( ) ( )
( ) = .

2 sin( )

I x I x
K x α α
α

π

πα

− −
  

Since 1 , 0( )I aβξ  and 0( )K aβξ  are three linearly independent solutions, therefore we can drop 0( )K aβξ  having less contribution in 

the solution. Also 0( )K aβξ  diverges at = 0ξ  with singularity of logarithmic type. With this assumption eq. (30) reduces to 

1 2 0( ) = ( ).c c I aφ ξ βξ+  

(31) 

( )

( )
0 1

1 2 2
0 1

2 ( ) ( )
= ,

( ) 2 ( )

a I a a I a
c

a I a a I a

β β βλ β

β β β λ β

−
− +

 

( )2 2 2
0 1

2
= .

( ) 2 ( )

a
c

a I a a I a

β

β β β λ β

−
− +

 

Substitute these constants in eq. (31) to get 

( )
0 0 1

2 2
0 1

2 ( ( ) ( ) ( ))
( ) = .

( ) 2 ( )

a I a I a a I a

a I a a I a

β β βξ βλ β
φ ξ

β β β λ β

− −
− +

 (32) 

And using eq. (32) in eq. (18) we get 

2 2
0 1 1

2 2
0 1 1

( ) 2 ( ) ( )
( ) = .

( ) 2 ( ) ( )

a I a I a a I a

a I a I a a I a

βξ β βξ β λξ β
ξ

β β β β λ β

− −
Φ

− −
 (33) 

Substitute φ  and Φ  from eq. (32) and eq. (33) in the components of velocity eq. (19) and eq. (20) to get 

( )0 0( , ) = ( ),
2

u xv
u x

a
ξ φ ξ−  

( ) ( )
0 0 10 0

2 2
0 1

2 ( ( ) ( ) ( ))
( , ) = ,

2 ( ) 2 ( )

a I a I a a I au xv
u x

a a I a a I a

β β βξ βλ β
ξ

β β β λ β

− −
−

− +
 

(34) 
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and 

0( , ) = ( ),v x vξ ξΦ  

2 2
0 1 1

0 2 2
0 1 1

( ) 2 ( ) ( )
( , ) = .

( ) 2 ( ) ( )

a I a I a a I a
v x v

a I a I a a I a

βξ β βξ β λξ β
ξ

β β β β λ β

− −
− −

 
(35) 

Hence unsteady components of the velocity are 

( ) ( )
0 0 10 0

2 2
0 1

2 ( ( ) ( ) ( ))
( , , ) = ,

2 ( ) 2 ( )
i ta I a I a a I au xv

u x t e
a a I a a I a

ωβ β βξ βλ β
ξ

β β β λ β

− −
−

− +
 (36) 

and 

2 2
0 1 1

0 2 2
0 1 1

( ) 2 ( ) ( )
( , , ) = .

( ) 2 ( ) ( )
i ta I a I a a I a

v x t v e
a I a I a a I a

ωβξ β βξ β λξ β
ξ

β β β β λ β

− −
− −

 (37) 

Equation (36) and eq. (37) completely define the axial and radial velocity components respectively. Further we introduce the 
following non-dimensional parameters 

,
0=RE

au
N

ϑ
  

,
0=

av
R

ϑ
  

and 

.
a

a
i

ρω β
γ

µ
= =   

where γ  is dimensionless frequenccy or Womersley number [8] and 1i = −  is imaginary unit. Hence by putting tτ ω=  and using 

above dimensionless parameters in eq. (36) and eq. (37) we get the following form of the velocity profile 

( )
0 0 1

2
0 0 1

( , , ) 2 ( ( ) ( ) ( ))1
= ,

2 ( ) 2 ( )
i

RE

i i i i i

i i i

u x I I Ix R
e

u a N I i I
τξ τ γ γ γ ξ γ λ γ

γ γ γ λ γ

  − − −    − +
 (38) 

and 

2

2

0 1 1

0 0 1 1

( , , ) ) 2 ( ) ( )
= .

( ) 2 ( ) ( )

ii i i i i

i i i i i

v x I I I
e

v I I I

τξ τ γ ξ γ γ ξ γ λξ γ

γ γ γ γ λ γ

− −

− −
 (39) 

Hence the velocity field is fully defined by equation (38) as axial component and by equation (39) as radial component. 

4. The Special Case I: = 0λ  

   Equation (38) and eq. (39) represent generalized solution to the flow problem. If there is no slip between the wall and fluid 
particles i.e., put = 0λ  in eq. (38) and eq. (39), we obtain 

τξ τ γ γ γ ξ

γ γ γ

  − −    −
,

0 0

0 0 1

( , , ) 2 ( ( ) ( ))1
=

2 ( ) 2 ( )
i

RE

i i i

i i i

u x I Ix R
e

u a N I I
 (40) 

 and 

τξ τ γ ξ γ γ ξ

γ γ γ

−
−

0 1

0 0 1

( , , ) ( ) 2 ( )
= .

( ) 2 ( )
iv x i I i I i

e
v iI i I i

 (41) 

Equation (40) and eq. (41) exactly match with the analytical solution (equations (51) and (52)) we had previously obtained [4] and 
therefore it is presented here as a special case to the generalized problem discussed in this paper. 

5. The Special Case II: 0 00, 0u v≠ =  

When there is no suction/injection at the walls flow becomes one dimensional and is driven solely by periodic pressure 
gradient. In this case the first part of the solution (eq. (38)) can be regarded as superposition of the well-known pulsatile solution/ 
Womersley solution [11] of the developed oscillating flow in a pipe of infinite length with slip condition. Thus eq. (38) reduces to 

( )
.

0 0 1
2

0 0 1

( , , ) ( ( ) ) ( ))
=

( ) 2 ( )
ii i i i i

i i i

u x I I I
e

u I i I
τξ τ γ γ γ ξ γ λ γ

γ γ γ λ γ

− −
− +

 (42) 

The dimensional velocity profiles given by eq. (42) are compared according to Womersley number γ  for no-slip case in Fig. 9.  
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Fig. 2. Axial velocity profile for small suction = 1R , = 5x , = 10a , = 5γ , = 10REN , / 4τ π=  and for different values of slip parameter λ . 

 

Fig. 3. Axial velocity profile for small suction = 1R , = 10a , = 5γ , = 10REN , / 4τ π= , = 0.01λ −  at different cross sections. 

 

Fig. 4. Axial velocity profile for small injection = 1R − , = 10a , = 5γ , = 10REN , / 4τ π= , = 0.01λ −  at different cross 

sections. 

6. Pressure Distribution 

   The pressure distribution within the flow field can be obtained by extracting the pressure gradients from eq. (22) and eq. (23) 
and by integrating with respect to x  and ξ  respectively. Thus we have 

0

= ( , ) (0, ),
x

p
dx p x p

x
ξ ξ

∂
−

∂∫  (43) 

and 

0

= ( , ) ( ,0).
p

d p x p x
ξ

ξ ξ
ξ

∂
−

∂∫  (44) 

It follows from eq. (42) and eq. (43) that 
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Fig. 5. Axial velocity profile for small suction = 1R , = 10x , = 10a , = 5γ , = 10REN , = 0.01λ −  and for different values of τ . 

 

Fig. 6. Axial velocity profile for small injection = 1R − , = 10x , = 10a , = 5γ , = 10REN , = 0.01λ −  and for different values of τ . 

 

Fig. 7. Radial velocity profile for = 5γ , = 0.1λ −  and for different values of τ . 

0 0
=0

= ( , ) (0,0).
x

x

p p
dx d p x p

x

ξ

ξ ξ
ξ

 ∂ ∂  + −  ∂ ∂ ∫ ∫  (45) 

Using eq. (22) and eq. (23) in equation eq. (44) we get 

( ) ( )
( ) ( )

( ) ( )

( )

( )

22 2
2 200

0 2 2 2 2

0

2
2

0 2 2

d d

d 1 1 dd d
( , ) = (0,0) d

d 2 d

1 1 d

2 d

v xv
p x p a v

a a a

u
a

ξ φ ξ
ξ µξ ξ

ξ µ β ξ ξ ξ β φ ξ φ ξ
ξ ξ ξ ξ ξ

µ β φ ξ φ
ξ

        Φ       Φ        + − Φ + Φ + − + − +                        

− −

∫

( )
( )d

d
.x

φ ξ
ξ

ξ
ξ

           +            

 (46) 
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Fig. 8. Axial velocity profile for the case when 0 0u = , = 5γ , = 0.1λ − , = 10x  and for different values of τ . 

 

Fig. 9. Dimensionless velocity profiles compared according to Womersley number; = 10x , = 1R − , = 10a , = 3REN , / 4τ π=  and  = 0λ . 

Hence from eq. (2) we have 

( , , ) = ( , ) ,i tP x t p x e ωξ ξ  (47) 

where (0,0)p  is pressure at the entrance of the channel. It is easy to complete the calculation for the pressure distribution by 

making the substitution for ( )φ ξ  and ( )ξΦ  from eq. (32) and eq. (33) in the eq. (45) and eq. (46). 

7. Results and Discussion 

   The expressions for axial and radial velocity components for the two dimensional unsteady stokes flow through a porous pipe 
of uniform circular cross section have been obtained in eq. (38) and eq. (39) respectively. It was assumed that there is non-zero slip 
velocity of the fluid layer in contact with the boundary. Hence by discussing special no-slip case we have justified our claim that 
the problem we have discussed is a generalized version to the one discussed in [4] for = 0λ .  
The curves in Fig. 2 show the behavior of axial velocity of the fluid for small periodic suction at the cross section = 5x  and for 
four different values of the slip length λ . Near the wall, it was desired to have a direct relationship between the axial velocity of 
the fluid and slip parameter, which can be visualized clearly in Fig. 2. With the increase in numerical value of λ  from 0 to 0.1, the 
magnitude of axial velocity component also increases near the wall. Also the velocity curve for = 0λ  corresponds to the special 
no-slip case. 
The case when wall Reynolds number is non-negative, corresponds to the periodic suction. The curves in Fig. 3 show behavior of 
axial velocity of the fluid for small periodic suction and 0.01λ =− . It has been observed that as fluid passes through various cross 
sections from = 0x  to = 20x  the axial velocity decreases. Similarly when wall Reynolds number is negative, precisely 1R =− , it 
corresponds to the periodic injection case. The axial velocity increases for this case as fluid passes through various cross sections 
from = 0x  to = 20x  which is shown in Fig. 4. 
In Fig. 5 and Fig. 6, we have the axial velocity plot for small periodic suction and small periodic injection respectively for different 
values of τ . Fig. 7  and Fig. 8 depict the axial and radial velocity profile for the case when 

0
= 0u  and 

0
0v ≠  and for the same 

values of Womersley number and slip length. It is also worth to note that the axial velocity is greater when τ  or =τ π  and radial 
velocity is minimum when = / 2τ π . In Fig. 9, we have the dimesionless axial velocity profiles for six different Womersley 
numbers from 2γ=  to 20γ = . For 2γ ≤  viscous forces dominate the overall flow. For 4γ ≥  viscous forces dominate the flow near 
the boundary layer and inertial forces dominate near the centeral part of the pipe, thus the velocity profile gets flattened near the 
centeral core. 

8. Conclusion 



 Zarqa Bano et. al., Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1168-1177   

1176

   The problem of unsteady Stokes flow of a Newtonian fluid past a porous cylindrical pipe with slip conditions have been 
discussed. The expressions for velocity components and pressure distribution are obtained. The no-slip case is also reported as a 
special case of the discussion. The results are hashed out graphically and analyzed by varying values of different parameters 
involved. It has been found that magnitude of axial velocity component increases with the increase in numerical value of slip 
parameter. Flow behavior for two different cases of small suction and small injection has also been investigated. It has been 
observed that for small suction the magnitude of axial velocity component decreases and it increases when there is small 
injection. 
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Nomenclature 

u  Velocity along x - direction x  Coordinate of pipe’s longitudinal axis 

v  Velocity along r - direction θ  Coordinate of pipe’s azimuthal axis 

U
�

 Unsteady velocity vector r  Coordinate of pipe’s transversal axis 

ρ  Constant fluid density t  Time 

a  Radius of the porous pipe µ  Dynamic viscosity 

ξ  Dimension-less radial distance, /r a  ϑ  Kinematic viscosity, /µ ρ  

ψ  Stream function λ  Slip parameter (slip length) 

R  Wall Reynolds number [5], 0av

ϑ
 ( , , )P x tξ  

Unsteady pressure distribution at point 

( , , )x tξ  

0
u  

Steady state axial velocity at entrance of pipe 0x = averaged over 
cross-section. REN  

Reynolds number for flow entering the pipe 

[5], 0au

ϑ
 

0
v  Cross flow radial velocity of fluid at wall of the pipe 1ξ =  ( , )p x ξ  pressure in the pipe at point ( , )x ξ  

γ  Dimensionless frequency or Womersley number [8], a
ρω

µ
 τ  tω  

β  
iρ ω

µ
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