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Abstract. In this article, the influence of microstructure in the Casson fluid flow through a porous medium is investigated, by 
extending the Buckingham-Reiner’s one-dimensional model to plane-Poiseuille flow and Hagen-Poiseuille flow geometries. While 
analyzing the flow characteristics in single-channel/pipes or multiple channels/pipes of different width/radius, four different 
probability density functions are used to model the pores widths/radii distributions. It is found that when the pressure gradient 
increases, the Buckingham-Reiner function raises slowly in the plane-Poiseuille flow, whereas in Hagen-Poiseuille flow, it rises 
rapidly. In all kinds of distribution of pores, the fluid’s mean velocity and porosity of the flow medium are considerably higher in 
the Hagen-Poiseuille flow than in the plane-Poiseuille flow, and this behavior is reversed for the permeability of the flow medium. 
The fluid’s mean velocity, porosity, and permeability of the flow medium increases appreciably with the rise of the channel width 
and pipe radius. The porosity of the flow medium slumps with the rise of the periodH of the channels and pipes distribution 
from 1 to 2, and it decreases very slowly with the further rise of the period H of the channels and pipes from 2 to 11. 

Keywords: Poiseuille flow in channel/pipe; Casson fluid; Mean velocity; Porous medium; Permeability; Pores distribution. 

1. Introduction 

   Several materials which we use in our everyday life, for example, toothpaste, emulsions, whipped cream, varnish, gels, syrups, 
edible oils, etc., cannot be classified into either elastic solids or simple fluids, are classified as non-Newtonian fluids [1, 2]. Among 
the several non-Newtonian fluids, indeed, some of them exhibit the yield threshold (yield stress), meaning that it is the stress 
level below which the fluid moves like a solid (which is termed as plug flow) and if the stress level exceeds this threshold limit, 
the fluid undergoes normal shear flow [3, 4]. Some examples of the well-known non-Newtonian fluids are semi-solid foods, paints, 
slurries, sauce, ketchup, corn starch, mud, drilling fluids, crude oil, etc. Herschel-Bulkley (H-B) fluid, Casson fluid, and Bingham 
fluid are some of the yield stress fluids which finds applications in many fields of bio-sciences, bio-medical engineering, 
petroleum, and chemical engineering, food industries, etc. [5 – 10].  
   Bingham fluid model is a non-Newtonian fluid with yield stress which has a linear relationship between the stress and rate of 
strain and, its yield stress is a stress level beyond which the fluid exhibits Newtonian fluid’s flow behavior [11]. H-B fluid is a yield 
stress fluid model that has three fluid parameters, such as power-law index, viscosity coefficient, and yield stress. This fluid 
model can describe the behavior of power-law fluid (shear thinning or shear thickening behavior) at zero yield stress, and it 
exhibits the Bingham fluid’s flow behavior when the power-law index n = 1 and Newtonian fluid model when the yield stress    
y = 0 and power-law index n = 1 [12,13]. Casson fluid model is also an important non-Newtonian fluid model that has two 
rheological parameters such as coefficient of viscosity and yield stress. It reduces to Newtonian fluid model when the yield stress 

y = 0 [14]. Since the Casson fluid’s constitutive equation is a nonlinear empirical relation between the stress and strain rate which 
can be used to model many fluid flow problems that are inherently nonlinear and the resulting mathematical model can be 
solved using either analytical method or computational methods without making any conceptual approximation (linearization) in 
the governing equations, it is used to model the present fluid flow problem [15, 16].  
  A porous media is a material composed of the network of pores, and it is often encountered as the flow medium, which has the 
vital characteristics such as porosity, permeability, tensile strength, electrical conductivity, tortuosity, etc. [17, 18]. The rheology of 
non-Newtonian fluids through porous medium finds applications in several fields such as observing nutrients from digestive 
system for distribution in the bloodstream, blood propagation through the kidney, the observation of rainwater by earth’s surface, 
removal of pollutants from effluent water in the treatment plant, injection of drilling fluids in rocks for strengthening of oil well 
and enhancing oil recovery, glue penetration in the porous surface of solid materials, injection of cement grouts, slurries or muds 
to improve soil strength [19 – 21].  
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Fig. 1. Schematic configuration of the flow system under study. 

The seminal contribution of Darcy [22] to the field of fluid flow in porous media attracted several researchers to advance the 
research in this field for different rheological geometries and physical conditions. Among the pores that form a network of the 
porous medium, the percolating conduits are the prime part of the porous medium as they observe the significant amount of 
fluids compared to the pores that are discretely distributed either at the end or at the other parts of the flow medium [23]. 
Computation of the size of the pore with these percolating conditions is a great challenge in the fluid flow problems [24]. Several 
researchers developed various techniques to find the characteristics of porous size distribution in the flow medium [25, 26]. 
Mercury intrusion porosimetry is one of these techniques which involve the injection of mercury into the porous medium and is 
based on the presence of a threshold below which the pores cannot be intruded by the fluid [27]. The BJH method (Barret, Joyner, 
and Halenda) is another method of finding the pore size distribution which makes use of the mechanisms of isothermal 
adsorption by the pore walls and the condensation by capillary which is owing to the molecular Van der Waals interactions 
between the condensing vapor and the internal surface of the pores [28]. 
   Buckingham [29] and Reiner [30] obtained the formula for finding the rate of fluid flow in a cylindrical pipe which is named as 
Buckingham-Reiner law. Several researchers studied this problem for different types of flow geometries and various other aspects 
of this flow [31, 32]. Dapra and Scarpi [33] investigated the unsteady flow through the plane channel and used the Pascal model to 
obtain the series solution for the start-up flow and later [34], they extended this study to flow through the cylindrical pipe. Chen 
et al. [21] investigated the one-dimensional flow within the framework of the two-dimensional network. Balhoff et al. [18] 
propounded effective numerical methods for estimating the rheological measures of the fluid flow through porous networks. 
Chevalier and Talon [35] analyzed the flow in a diamond-shaped porous network, and they assigned a random threshold to 
different paths. Chevaliar et al. [36] experimentally obtained the appropriate Darcy law for the Herschel-Bulkley flow through a 
porous medium and pointed out the non-Newtonian characteristics of the flowing fluid. Bleyer and Coussot [19] numerically 
modeled the flow of Bingham fluid through an array of circular tubes. Nash and Rees [37] investigated the effects of pores in the 
one-dimensional Bingham fluid flow through a channel and pipe, assuming that the pores in the channel/pipes are distributed in 
some types of probability density functions. The present mathematical analysis attempts to study the influence of pressure 
gradient, width of channel/pipe radius, period of channels/pipes distribution on the mean velocity, porosity and permeability of 
the flow medium in the (i) plane-Poiseuille flow and (ii) Hagen-Poiseuille flow of Casson fluid through single channel/single pipe 
and multi-channel/multi-pipes. Three types of probability density functions, such as uniform distribution, quadratic distribution, 
and two forms of linear distribution, are used to model the distribution of the pores in the porous flow medium. The 
meaning/importance of the present study from the physics perspective is explained below with some typical examples: 
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(a) Flow in rectangular channel. 

   

(b) Flow in a circular pipe. 

 

 (c) Cross-section of porous medium with circular pores.  

Fig. 2. Flow geometry in a porous medium. 

The non-Newtonian fluids flow in porous media is an important physical phenomenon that has several potential applications 
such as blood flow in capillaries and tissues, injection of drilling fluids in the mining industry to strengthen the walls of mines, 
the flow of viscoplastic and Newtonian fluids through argillaceous soils, etc.. [20]. Some of the injecting fluids which are used in 
the oil industry show the strong characters of non-Newtonian fluids with yield stress that move like liquid only if the applied 
stress is larger than a critical value (yield stress) [21, 38, 39]. The flow of such non-Newtonian fluids in a porous medium is noted 
with the strong characteristics of yield stress, which likely induces specific fluid properties that are so not investigated in depth 
so far. Though Bingham fluid and Casson fluid are non-Newtonian fluid models with a yield stress, the constitutive equation 
Casson fluid models is highly nonlinear compared to that of Bingham fluid. Thus the Casson fluid model can exhibit more 
complex behavior of nonlinear fluids when they flow past a porous medium consisting of a bundle of channels of different width/ 
pipes of different radii. The present study not only analyses the effects of pressure gradient on the Buckingham-Reiner function 
and Darcy mean velocity but also discusses in depth the influence of the width of channels/radii of pipes, period of 
channels/pipes in the porous medium/network of permeability of the flow medium. Moreover, this paper points out that the 
porosity and permeability of the fluid flow in the porous medium have the same characteristic in all types of distribution of 
channels widths/pipes radii that are defined by the three different types of probability density functions. 
The organization of this research article is given below in brief:  
   Section 2 formulates the fluid flow problem mathematically and then the analytical solutions for the rheological quantities, 
viz. velocity profile, flow rate, Buckingham-Reiner formula, mean velocity in single channel/single pipe, mean velocity in multi-
channel/multi-pipe, porosity, and permeability in plane-Poiseuille and Hagen-Poiseuille flows are also obtained in this section. 
The influence of the flow parameters such as pressure gradient, the width of channel/radius of the pipe, the period of rectangular 
channel/cylindrical pipes distribution in the flow medium on the important rheological quantities such as Buckingham – Reiner 
function, mean velocity, porosity and permeability of the flow medium are analyzed in Section 3 through the appropriate 
graphical representation of data computed from these functions. The major results of this study are collated in the conclusion 
section 4. The flow chart for the schematic configuration of the flow system under study is given in Fig. 1. 
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2. Mathematical Framework 

2.1 Plane-Poiseuille flow in single-channel 

Let us consider the axisymmetric, plane Poiseuille flow of viscous incompressible fluid in a rectangular channel of width h  

bounded by the planes 2y h=± . The geometries of the fluid flow in a rectangular channel and circular pipe are shown in Fig. 2(a) 

and 2(b) respectively. The cross-sectional geometry of the porous medium with circular pores is depicted in Fig. 2(c) (The 
rheological measures pertaining to the Hagen-Poiseuille flow are obtained in Appendix).  

Let ( )( )u u y=  be the fluid velocity along the x axis. Since the flow considered here is uni-directional and isothermal, the 

simplified form of the momentum equation governing this flow is: 

0,
dp d

dx dy

τ
− + =  (1) 

where ( )x yτ τ=  and p  are the shear stress and fluid pressure, respectively.  

The flowing incompressible fluid is modeled as a Casson fluid model whose constitutive equation (empirical relation 
connecting the shear stress and rate of strain) for its flow in the channel is given as under: 

( ) if ,y y

du

dy
µ τ τ τ τ= − >  (2) 

0 if ,y y

du

dy
τ τ τ= − < <  (3) 

( ) if ,y y

du

dy
µ τ τ τ τ=− − <−  (4) 

where µ  is the Casson fluid’s viscosity coefficient. The boundary conditions that are appropriate to this flow are 

0 at 0; 0 at 2y u r hτ = = = =±  (5) 

   For computational convenience, let us denote the pressure drop per unit length as ( )G dp dx=−  which is a positive quantity 

that makes the fluid velocity to be positive as it is non-zero. Solving Eq. (1) along with the boundary condition (5a), we obtain the 
simplified expression for the shear stress as G yτ = . Since the Casson fluid has non-zero yield threshold, the flow domain in the 

channel is divided into three regions as described below: 

Part –I: 
2 2

h h
y

∈
− ≤ ≤−  (Lower part – Shear flow region).  

Part – II: 
2 2

h h
y

∈ ∈
− ≤ ≤  (Middle part – Plug flow region).  

Part – III: 
2 2

h h
y

∈
≤ ≤  (Upper part – Shear flow region).  

   Since the flow considered is axisymmetric, the fluid’s velocity in the upper region (part III) and lower region (part I) of the flow 
regions are equal, and thus, it is enough to find the expression for velocity in the upper part of the shear flow region and in the 
plug-flow region. From Eqs. (4) and (5b), one can obtain the velocity of Casson fluid in the upper region (Part III) and plug flow 
(solid-like flow) region (Part II) as below respectively: 

( ) ( ) ( )3 2 3 22 2
2

4 2 2 if ,
8 2 3 2 2

yy h h h
u y h y y h y y

ττ

µ µ µ

Ω Ω ∈= − + − − − ≤ ≤  
 (6) 

( ) ( ) ( )
32

3 22
2

1 1 1 if ,
8 2 3 2 2

yy

P

hhh h h
u y

ττ

µ µ µ

ΩΩ ∈ ∈
= −∈ + −∈ − −∈ − ≤ ≤  (7) 

where 2 y hτ∈= Ω  is the proportion of the channel where plug flow occurs, Ω  is the pressure gradient and the expression for 

the velocity profile in Eq. (6) is valid only when 1∈< . If 1∈> , then the plug flow would happen in the whole channel region. Let 

1 2 yhσ τ= ∈=Ω , then, σ is the dimensionless pressure gradient which mainly depends on the fluid’s yield stress. It is realized 

that the fluid starts to flow when σ  increases above unity and thus 1σ =  is the threshold level of pressure gradient.  
   Since our objective is to study the flow through a porous medium, we assume that the porous flow medium comprises of a 

periodic array of channels/pipes of the period H . Then, the flow medium’s porosity is h Hφ = . The total flow rate Q  within one 

channel is obtained as below: 

( ) ( )
2 2 2 3 2

2 0 2

2 ,
12 6

h h h

pl

h h

h h
Q udy u dy udy f fσ σ σ

µ µ

∈

− ∈

  Ω Ω = = + = = 
  

∫ ∫ ∫  (8) 
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where 

( )
3

12 3 1
1 if 1

2 105 .

0 otherwise

f
σ

σ σσσ

 − + − >= 

 (9) 

The function ( )f σ  obtained in Eq. (9) is the Buckingham- Reiner function (formula) for the plane-Poiseuille rheology of Casson 

fluid. When the yield stress ( )0 . . 1 0y i eτ σ= ∈= = , Casson fluid model deduces to Newtonian fluid model. It is noted that when 

0∈ =  (Casson fluid model reduces to Newtonian fluid model), the expressions obtained for the flow rate in Eqs. (8) and (A1) (in the 

Appendix) for the plane-Poiseuille flow and Hagen-Poiseuille flow respectively are in good agreement with the expression 

obtained by Nash and Rees [36] in their Eqs. (6) and (48) respectively (Bingham fluid model reduced to Newtonian fluid model 

when 0∈ = ). Since we restrict the pressure gradient Ω  as positive, σ would be positive and henceforth we use σ  rather than σ . 

The Darcy velocity of Casson fluid Cu  is its mean velocity which is computed over a period of the channels’ pattern as below: 

( ) ( )
2

,
12C

h K
u f f

φ
σ σ

µ µ

Ω Ω
= =  (10) 

where 

2

and ,
12

hh
K

H

φ
φ = =  (11) 

are the porosity and permeability of the porous medium, respectively. These are some of the prime parameters of this study, 

which strongly depends on the channels’ choice and are used to find the period of a porous medium. An important criterion for 

this flow is that 1σ >> , and thus, one can easily obtain the mean velocity of Newtonian fluid flow as Nu K µ=Ω . The normalized 

mean velocity ( )f σ  of the Casson fluid (comparing the response of Casson fluid and Newtonian fluid for flow in a channel) in 

plane-Poiseuille flow is defined as: 

( ) C Nf u uσ =  (12) 

From Eq. (9), we note that ( ) 1 asf σ σ→ →∞ . The normalized mean velocity ( )f σ  close to threshold values reduce to the 

quadratic form as below: 

( ) ( ) ( ) ( )3 41 21
1 1 ...., 0 1 1

4 32
f σ σ σ σ= − − − + < − <<  (13) 

For an extremely higher value of σ , Casson fluid exhibits Newtonian fluid’s behavior. The three-term approximation to the 

induced flow ( )fσ σ  can be obtained as: 

( ) 12 3
, 1

5 2
fσ σ σ σ σ≈ − + >>  (14) 

The equivalent flow quantities for the Hagen-Poiseuille flow (flow in a circular pipe) of Casson fluid are obtained in the 

Appendix, where ( )g σ  is the normalized mean velocity of Casson fluid in the circular tube of radius h . Henceforth, we use the 

notation ( )( )C NF u uσ =  and ( )( )C NG u uσ =  to represent the ratio formed between the volume flow rate of Casson fluid and that of 

Newtonian fluid in channel and tube flow respectively. 

2.2 Effect of two channels of different width 

The rectangular/circular shape of pores in the porous flow medium are the more widely encountered/adopted pore shapes in 

nature and industrial applications. For some specific purposes, we design the porous medium with other kinds of pore shapes, 

such as triangle, pentagonal, hexagonal, etc. In this study, we consider that the porous medium with rectangular and circular 

pores [40]. Firstly, we consider the porous medium that has one period of channels, which consists of the first channel of width h  

and a second narrower channel of width hγ  where 1γ < . The total flux of Casson fluid flow through one period of channels (with 

a broader channel of width h  and a narrow channel of width hγ ) is given by the formula [Nash and Rees, 37]: 

( ) ( )3 3 12 .Q h f fσ γ γσ µ = Ω +    (15) 

The Darcy velocity for this flow is: 

( ) ( ) ( ) ( )3 31 .Bu K f fµ σ γ γσ γ = Ω + +    (16) 

The mean velocity of Casson fluid relative to that of Newtonian fluid is: 

( ) ( ) ( ) ( )3 31 .B Nu u F f fσ σ γ γσ γ = = + +    (17) 

The porosity and permeability of the channel medium are obtained respectively as: 

( )1 ,h Hφ γ= +  (18) 

( ) ( ) ( )2 312 1 1 .K hφ γ γ = + +    (19) 
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2.3  Effect of multi-channels of different width 
Now, we generalize the two-channel per period of the porous medium toN channels per period of the porous flow medium. 

Let us assume the width of the channels as ihγ  for 1,2,...,i N= , and the channels are put in the descending order of their width, 

then we have: 

1 21 .... .Nγ γ γ= ≥ ≥  (20) 

The Darcy velocity of Casson fluid throughN channels per period of the porous medium is defined by: 

( ) ( )3 3

1 1

.
N N

C i i i
i i

u K fµ γ γ σ γ
= =

 
 = Ω   
∑ ∑  (21) 

The Darcy mean velocity of Casson fluid relative to that of Newtonian fluid is defined as: 

( ) ( )3 3

1 1

.
N N

C N i i i
i i

u u F fσ γ γ σ γ
= =

 
 = =   
∑ ∑  (22) 

The porosity and permeability of the porous medium, which has N  channels per period are respectively given below: 

( )
1

N

i
i

h h H γ
=

= ∑  (23) 

( )2 3

1 1

12 .
N N

i i
i i

K hφ γ γ
= =

 
 =   
∑ ∑  (24) 

For the Hagen-Poiseuille fluid flow in a porous medium, which comprise of multi-circular tubes, the expressions similar to Eqs. 
(20) – (24) are obtained in the Appendix.  

2.4  Channels’ random distribution 

The distribution of pores in the flow medium mostly has some particular pattern which often follow some particular 
probability distributions. In this study, to analyze the flow field, the distribution of width of the channels in the porous medium is 
assumed to follow the probability distributions such as (i) Uniform distribution, (ii) Linear distributions (Type I and Type II) and (iii) 

Quadratic distribution. Let ( )ψ γ  be the probability density function of the widths of the channels in the porous medium. For fluid 

flow in channel, the expression for the Darcy velocity of Casson fluid relative to that of the Newtonian fluid, the porosity, and 
permeability of the flow medium can be obtained by using Eqs. (25) – (27) respectively [37]: 

( ) ( ) ( ) ( )3 3

0 0

,F f d dσ γ ψ γ γσ γ γ ψ γ γ

∞ ∞

= ∫ ∫  (25) 

( ) ( )
0

,h H dφ γ ψ γ γ

∞

= ∫  (26) 

( ) ( ) ( ) ( )2 3

0 0

12 ,F h d dσ φ γ ψ γ γ γ ψ γ γ

∞ ∞

= ∫ ∫  (27) 

2.4.1 Uniform distribution 

When the pores of the flow medium are uniformly distributed, its probability density function is: 

( )
1

if 1
.1

0 otherwise

a
a

γ
ψ γ

 < <= −

 (28) 

The Darcy velocity of Casson fluid in the multi-channel with uniformly distributed pores is: 

( )
( )

( )
( )

( )
( )( ) ( )( )

7 24 3

4 4

7 2 2

2 3 24

0 if 0 1

35 96 70 14 5
if 1 1

35 1

96 1 2 1 2 1
1 if

1 1 5 1 135 1

F a
a

a a a

aa a a aa

σ

σ σ σ σ
σ σ

σ

σ
σ σσ

 ≤ < − + − += ≤ ≤ − − + + − + − > + + + +−

 (29) 

From Eq. (29), it is noted that depending on the range of the values of σ , the whole region of flow is divided into three 

regions/phases. In the first region ( )0 1σ≤ < , the flow is stagnant, while in the intermediate region ( )1 1 aσ≤ ≤ , the flow 

develops in the proportion of channels whose width varies from h σ  to h . In the last regime ( )1 aσ > , the flow occurs in all the 

channels. For the present flow (channel with uniformly distributed pores), the porosity and permeability are obtained as: 
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( )1
,

2

ah

H
φ

  +=   
 (30) 

( )22 1
.

12 2

ah
K

φ  + =    
 (31) 

When 0a =  (the channel width do not have a lower limit), then the third region no longer exists. Thus, we have the simplified 
expression for Darcy velocity as below: 

( ) 7 24 3

4

0 if 0 1

if 135 96 70 14 5

35

F

σ

σ σσ σ σ σ

σ

 ≤ ≤= > − + − +

 (32) 

 
2.4.2 Linear distribution 

Let us apply the following probability density functions of two linear distributions to describe the pattern of the pores in the 
flow medium:  

( ) ( ) 2 , 0 1;i ψ γ γ γ= ≤ ≤  (33) 

( ) ( ) ( )2 1 , 0 1;ii ψ γ γ γ= − ≤ ≤  (34) 

For the first linear distribution (defined in Eq. (33)), the expressions for Darcy velocity, porosity, and permeability are obtained 
as Eqs. (35) – (37). 

( ) 9 25 4

5

0 if 0 1

25 64 45 12 21
if 1

150

F

σ

σ σ σ σ σ
σ

σ

 ≤ ≤=  − + − + >

 (35) 

2
,

3

h

H
φ =  (36) 

23
.

5 12

h
K

φ  =    
 (37) 

For the second linear distribution (given in Eq. (34)), the expressions of Darcy velocity, porosity, and permeability simplify to 
Eqs. (38) – (40).  

( ) 9 25 4 2

5

0 if 0 1

126 48 315 126 1422 1155
if 1

126

F

σ

σ σ σ σ σ σ
σ

σ

 ≤ ≤=  − + − − + >

 (38) 

,
3

h

H
φ =  (39) 

23
.

20 12

h
K

φ  =    
 (40) 

2.4.3  Quadratic distribution 

The probability density functions of quadratic distributions is defined as below in Eq. (41): 

( ) ( )23 1 , 0 1;ψ γ γ γ= − ≤ ≤  (41) 

On using the quadratic distribution to represent the width of the pores in the flow medium, one can obtain the expressions 
for Darcy velocity, porosity, and permeability as Eqs. (42) – (44), respectively: 

( ) 11 26 5 3 2

6

0 if 0 1

77 12928 231 616 1237 385 476
if 1

77

F

σ

σ σ σ σ σ σ σ
σ

σ

 ≤ ≤=  − + − + − + >

 (42) 

,
4

h

H
φ =  (43) 

21
.

5 12

h
K

φ  =    
 (44) 
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2.4.4  Justification for the choice of probability density functions and their coefficients 

In several industrial and real-world applications, the porous medium in fluid flow is mostly formed with channels/pipes 
whose widths/radii are distributed either randomly or in some particular pattern. Oukhelf [23] pointed out that the pores size 
distribution in the porous medium/network (which composed of channels/pipes) can be determined from the analytical solution 
of integral equation, which is resulted from the equation of total flux of fluid flow and the constitutive equation of flowing fluid. 
Through the theoretical studies, Oukhelf [23] confirmed that the pores size distribution of channels/pipes in the porous medium 
obtained through the aforesaid analytical solution are in good agreement with the corresponding values obtained from the 
normal distribution’s probability density function (PDF) (refer Fig. 5 in Ref. [23]). Oukhelf [23] also propounded that the 
computation of pore size distribution from the PDF is quite easier than obtaining these values by solving the Volterra integral 
equation to obtain the analytical solution and then computing pore size distribution values from this analytical solution. Thus, for 
computational efficiency of pores size (width of channels/radii of pipes) distribution in the channels/pipes in porous 
medium/network, we use the different PDFs such as (i) uniform distribution, (ii) two types of linear distributions and (iii) 
quadratic distributions. It is hoped that these three types of PDFs would cover the different sizes and pattern of pores distribution 
(channels width/pipes radius) in the porous medium of fluid flow which we encounter in various applications of porous medium 
such as filtration of toxic wastages in effluent treatments plants, the absorbance of salts in the purification processes of mineral 
water, absorbing of bio-fluids in biological tissues, diffusion of drugs in the circulatory systems of body, water absorbance by 
various types of river bed, etc.  

 The parameter a  in the PDF of uniform distribution is assigned different values in the interval to study the effect of 

different sizes of pores (channels widths/ pipes radii) on the mean velocity, permeability, and porosity in the fluid flow. Since the 

PDF of Type I of linear distribution (Eq. (33)) is monotonically increasing with γ  (channels widths/pipes radii increasing with γ ) 

and the PDF of Type II of linear distribution (Eq. (34)) is monotonically decreasing with γ  in ( )0,1  (channels widths/pipes radii 

decreasing with γ ), we have taken ‘2’ as their sample scaling factor to magnify (enlarge) the channels widths/pipes radii in the 

porous medium/network. Similarly, as the PDF of quadratic distribution (Eq. (41)) is monotonically decreasing with γ  in ( )0,1  

(channels widths/pipes radii decreasing with γ ), the scaling factor ‘3’ in its PDF magnifies (enlarges) the channels widths/pipes 

radius as narrow. 

3. Numerical Simulation of Results and Discussion 

The aim of this mathematical analysis is to investigate the influence of the flow parameters, viz. pressure gradient σ , the 

width h  of rectangular channel/radius h  of a cylindrical pipe, the period H  of rectangular channel/cylindrical pipes distribution 

in the flow medium on the important rheological metrics such as Buckingham – Reiner function ( ) ( )( )orf gσ σ , mean velocity 

C Nu u , porosity φ  and permeability K  of the flow medium, in the uni-directional flow of Casson fluid through a rectangular 

channel of width h /cylindrical pipe of radius h  having the characteristics of porosity and permeability. The parameters used in 

this analysis and their range are listed hereunder [37]: 

Pressure gradient :1 5;σ −  Channel width / Pipe radius h : 0.7 – 1.0; Period of channels / pipes distribution : 1 11;H −  Ratio 

between the multi-Channels widths / ratio between the multi-pipes radius : 0.5 1;γ −  Parameter of uniform distribution : 0 1a −  

[37]. The justification for the choice of parameter range is briefed below:   

The range of the pressure gradient parameter σ  is taken as 1 6−  since no shear flow happens when 1σ <  (the whole 

flow region is unyielded when 1σ < ), and as the flow under study is slow (viscous flow as the inertial terms in the momentum 

equations are neglected) the upper limit of the pressure gradient is limited to 6. To cover the wide range of multi-channels 

width/multi-pipes radius, the ranges of the single-channel width/single-pipes radius parameter h  and multi-channels 

widths/multi-pipes radii ratio parameter γ  are taken as 0.7 – 1.0 and 0.5 – 1 respectively [37]. To analyze the influence of different 

patterns of the distribution of channels/pipes on the permeability and porosity of the porous medium, the period of channels 

parameter H  is taken in the range 1 – 11 [37]. Similarly, to investigate the variations in the permeability and porosity of the porous 

medium for different choices of uniformly distributed channels width/pipes radii, its parameter a  values range ( )0,1  is adopted 

from Nash and Rees [37]. Some of the natural and industrial applications of these kinds of flow covering the range as mentioned 

earlier of parameter values are injection of cement in soils, penetration of glue in porous substances, polymer processing in 

packed beds and injection molding, etc. [18, 20].  

   It is to be noted here that in the plots of all the graphs presented in this section, dotted red lines denote the flow 

characteristics in Hagen-Poiseuille flow, while the continuous blue lines refer to the flow quantities’ variation in plane-Poiseuille 

flow.    

3.1 Buckingham-Reiner function 

Fig. 3 depicts the variation of Buckingham-Reiner function ( ) ( )( )orf gσ σ  (normalized flow rate) with pressure gradient for the 

plane-Poiseuille flow (steady flow in a rectangular channel) and Hagen-Poiseuille flow (steady flow in a cylindrical tube) of Casson 
fluid in the porous flow medium. Firstly, we note that in the plane-Poiseuille flow of Casson fluid, the Buckingham-Reiner 
function increases slowly (linearly) with the pressure gradient σ , whereas in the case of Hagen-Poiseuille flow of Casson fluid, it 
soars up with the rise of the pressure gradient from 1 to 2.5 and then it increases very slowly (almost constant) when the pressure 
gradient raises from 2.5 to 5. At a given pressure gradient level, the Buckingham-Reiner function has markedly higher value in the 
Hagen-Poiseuille flow than in plane-Poiseuille flow.  

For comparing the characteristics of Casson fluid with Bingham fluid, the variation of Buckingham-Reiner function with the 

pressure gradient for the plane-Poiseuille flow and Hagen-Poiseuille fluid of Bingham fluid are also sketched in Fig. 3. It is noticed 

that the Buckingham-Reiner function of the Hagen-Poiseuille flow is marginally higher for Casson fluid than for the Bingham 

fluid when the pressure gradient σ varies in the range 1 – 4.25 and this behavior is reversed when the pressure gradient exceeds 

4.25. However, in the plane-Poiseuille flow, the Buckingham-Reiner function is significantly higher for Bingham fluid than for the 

Casson fluid. The reasons for the aforesaid abnormal behavior of Casson and Bingham fluids between the plane-Poiseuille flow 

and Hagen-Poiseuille flow are explained as below: 

 



 D.S. Sankar and K.K. Viswanathan, Vol. 8, No. 2, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 2, (2022), 456-474   

464 

  

Fig. 3. Variation of Buckingham–Reiner function with pressure gradient 

for plane–Poiseuille flow and Hagen-Poiseuille flow of Casson and 

Bingham fluids. 

Fig. 4. Dimensionless Buckingham–Reiner function Vs. pressure gradient 

for plane–Poiseuille and Hagen Poiseuille flows. 

  

Fig. 5. Variation of mean velocity of Casson fluid with pressure gradient 

in the porous medium having multi-channel / tubes of different 

width/radii. 

Fig. 6. Variation of mean velocity of Casson fluid with pressure gradient 

for flow in porous medium with several multi-channel/pipes with 

1 2 3 4 5
1, 0.9, 0.8, 0.7, 0.6γ γ γ γ γ= = = = = and

6
0.5γ = . 

  

Fig. 7. Variation of the fluid’s mean velocity with pressure gradient in the 

flow through porous medium with multi-channel of width/multi-pipe of 

radii 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1γ = when the pores in the flow 

medium are distributed in uniform distribution. 

Fig. 8. Variation of mean velocity of Casson fluid with pressure gradient 

for flow in multi-channel/pipes with pores in the porous medium 

distributed in uniform distribution with 0, 0.2, 0.4, 0.6, 0.8a = . 
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It is well known that the constitutive equation of Bingham fluid is linear. Since the constitutive equation of Casson fluid is 
nonlinear, the Buckingham-Reiner functions of Casson fluid model for plane-Poiseuille flow (Eq. (9)) and Hagen-Poiseuille flow (Eq. 
(A2)) are highly nonlinear compared to those of Bingham fluid model (Eq. (6) and Eq. (48) in the paper of Nash and Rees [37] for 
plane-Poiseuille flow and Hagen-Poiseuille flow respectively). Hence, this nonlinearity leads to the abnormal variation in the 
Buckingham-Reiner functions of Casson and Bingham fluids between the plane-Poiseuille flow and Hagen-Poiseuille flow, which 
is transparent in Fig. 3. 

The variation of dimensionless Buckingham-Reiner function ( ) ( )( )orf gσ σ σ σ  with pressure gradient for plane-Poiseuille flow 
and Hagen-Poiseuille flow of Casson fluid through the porous medium is delineated in Fig. 4. It is seen that the dimensionless 
Buckingham-Reiner function increases almost linearly with the pressure gradient. When the pressure gradient σ is kept as 
constant, the Buckingham-Reiner function value is significantly higher in the Hagen-Poiseuille flow than in plane-Poiseuille flow. 
This means the cylindrical geometry of the flow medium enhances the volume flow over the rectangular geometry of the flow 
medium, and thus, the volume flow rate is significantly higher in Hagen-Poiseuille flow than in plane-Poiseuille flow. One can 
realize that the shape of the flow medium plays a vital role in enhancing the fluid’s velocity.   

3.2 Mean velocity in multi-channel/multi-pipe 

Fig. 5 illustrates the variation in the mean velocity of Casson fluid with pressure gradient when it flows through the porous 
medium having multi-channel/multi-pipes of different width/radii. One can record that the mean velocity in plane-Poiseuille flow 
rises linearly when the pressure gradient increases, whereas in the Hagen–Poiseuille flow, it soars up when the pressure gradient 
increases from 1 to 2.5 and then it increases slowly when the pressure gradient increases from 2.5 to 5. It is also found that the 
mean velocity is significantly higher in the Hagen-Poiseuille flow than in plane-Poiseuille flow. i.e., the cylindrical geometry of the 
flow medium rises the fluid’s mean velocity over the rectangular geometry of the flow medium.  

The variation in the mean velocity of Casson fluid with the pressure gradient for flow in porous medium with several multi-
channel/pipes with 1,2,3,4,5,6n =  ( 1 21, 0.9,γ γ= = )3 4 5 60.8, 0.7, 0.6, 0.5γ γ γ γ= = = =  is shown in Fig. 6. One may note that the 
mean velocity in plane–Poiseuille flow increases linearly with the rise of the pressure gradient σ , whereas in the case of Hagen–
Poiseuille flow, it rises rapidly when the pressure gradient rises from 1 to 2.5, and then it increases slowly (almost constant) with 
the rise of the pressure gradient from 2.5 to 5. The reason behind this abnormal behavior of Casson fluid between the plane-
Poiseuille flow and Hagen-Poiseuille flow is that in the case of Casson fluid flow in multi-pipes, the Buckingham-Reiner function 
(Eq. (A2)) and mean velocity (Eq. (A7)) are highly nonlinear compared to those of multi-channels fluid flow. One can also notice 
that the fluid’s mean velocity is significantly higher in Hagen-Poiseuille flow than in plane-Poiseuille flow. It is also recorded that 
when the number of channels/pipes ( )n  in the flow medium increases, the fluid’s mean velocity increases marginally in plane-
Poiseuille flow, whereas in Hagen-Poiseuille flow, it increases very slightly.  

3.3 Mean velocity in channels/pipes with uniform distribution of pores  

Fig. 7 sketches the variation of the fluid’s mean velocity with pressure gradient in the flow through a porous medium 
composed of multi-channel of widths/multi-pipe of radii 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1γ =  when the pores in the flow medium are 
distributed in uniform distribution. It is seen that the fluid’s mean velocity in plane-Poiseuille flow increases slowly when the 
pressure gradient rises; but in the Hagen-Poiseuille flow, it increases rapidly (nonlinearly) with the rise of pressure gradient from 1 
to 2.5 and then it increases slowly with the further rise of pressure gradient from 2.5 to 5. Moreover, the fluid’s mean velocity 
decreases slightly with the increase of the width of the channel/radius of the pipe. The variation of mean velocity with pressure 
gradient for flow in multi-channels/multi-pipes with pores distributed in uniform distribution for different values of the uniform 
distribution parameter a  is rendered in Fig. 8. One can note that when the pressure gradient rises and rest of the parameters are 
treated as invariables, the mean velocity increases slowly (almost linearly) in plane-Poiseuille flow of Casson fluid, whereas it 
surges in the Hagen-Poiseuille flow of the fluid. It is also propounded that the fluid’s mean velocity increases marginally with the 
increase of the uniform distribution parameter ' 'a  for the pores in the flow medium. For a given set of value of the parameters a  

and σ , the mean velocity is significantly higher in Hagen-Poiseuille flow than in plane-Poiseuille flow. From Figs. 7 and 8, one can 
spell out that the cylindrical geometry of the flow medium reduces the resistive forces to enhance the fluid’s mean velocity over 
the rectangular geometry of the flow medium.  

3.4 Mean velocity in channels/pipes with linear distribution of pores  

The variation of mean velocity with pressure gradient for flow in multi-channel/multi-pipes with pores in these flow medium 
distributed in linear distribution of Type I for different width of multi-channels/radius of multi-pipes is plotted in Fig. 9. It is found 
that when the pressure gradient σ  rises, the fluid’s mean velocity increase very slowly in the plane-Poiseuille flow; whereas, in 
the Hagen-Poiseuille flow, it rises rapidly (nonlinearly). One can also notice that when the parameters σ  and γ  are treated as 
invariables, the fluid’s mean velocity is significantly higher in Hagen-Poiseuille flow than in plane-Poiseuille flow. When the 
pressure gradient σ  is held constant, the mean velocity raises marginally with the increase in the widths of the multi-
channels/radii of the multi-pipes.  

Fig. 10 delineates the variation in the mean velocity with pressure gradient in the plane-Poiseuille flow/Hagen-Poiseuille flow 
through porous medium with pores distributed in linear distribution of Type II for different values of channel width/pipe radius. 
One can notice that when the pressure gradient parameter σ  increases, the mean velocity in plane-Poiseuille flow rises slowly; 
whereas in Hagen-Poiseuille flow, it linearly increases with the rise of pressure gradient σ  from 1 to 3 and then it raises rapidly 
when pressure gradient increases further from 3 to 6. When the given pressure gradient σ  is held constant, the mean velocity 
increases marginally with the rise of the channel width/pipe radius. It is noticed that when the flow parameters σ  and γ  are kept 
as constant, the mean velocity of the fluid is significantly higher in Hagen-Poiseuille flow than in plane-Poiseuille flow. From Figs. 
9 and 10, one may record that the mean velocity of Casson fluid is significantly higher in the second type of linear distribution of 
pores than those recorded for the first type of linear distribution of pores. From Figs. (9) – (11), one can note that the mean velocity 
is considerably higher in circular geometry of the porous flow medium than in the rectangular geometry of the flow medium, 
meaning that the circular flow geometry enhances the fluid flow by overcoming from the resistive forces.  
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Fig. 9. Variation of mean velocity of Casson fluid with pressure gradient 
for flow in multi-

channel/pipes with porous medium with pores distributed in linear dist

ribution of Type I with 0.8, 0.85, 0.9, 0.95, 1γ = . 

Fig. 10. Variation of mean velocity of Casson fluid with pressure gradient
 for flow in multi-

channel/pipes with porous medium with pores distributed in linear distr

ibution of Type II with 0.8, 0.85, 0.9, 0.95, 1γ = . 

 

Fig. 11. Variation of mean velocity of Casson fluid with pressure gradient for flow in multi-

channel/pipes with porous medium with pores distributed in quadratic distribution with 0.8, 0.85, 0.9, 0.95, 1γ = . 

3.5 Mean velocity in channels/pipes with quadratic distribution of pores  

Fig. 11 outlines the variation in the fluid’s mean velocity with pressure gradient σ  for plane-Poiseuille flow and Hagen-
Poiseuille flow in a porous medium with pores distributed in quadratic distribution for various values of channel width and pipe 
radius. One can note that the mean velocity slowly increases with the rise of the pressure gradient σ  from 1 to 4, and then it rises 
rapidly when the pressure gradient σ rises further from 4 to 6.In-plane-Poiseuille flow as well as Hagen-Poiseuille flow. The mean 
velocity raises considerably with the rise of the channel width and pipe radius when all the other parameters were held constant. 
One can also note that the fluid’s mean velocity is considerably higher in Hagen-Poiseuille flow through porous medium than in 
plane-Poiseuille flow through the porous medium.  

3.6 Porosity of the flow medium 

Figs. 12 (i) – 12(iv) limn the variation in the porosity of the flow medium with the period of channels/pipes distributionH when 

the pores in the channels/pipes follow uniform distribution for different values of channel width/pipe radius and for the different 

values of the uniform distribution parameter ' 'a  such as ( ) 0.8,i a =  ( ) 0.85,ii a =  ( ) 0.9iii a =  and ( ) 0.95iv a = . It is found that the 

porosity of the flow medium slumps with the rise of the period of the channels/pipes distribution parameterH from 1 to 2, and 

thereafter, it decreases very slowly with the further rise of the period of the channels/pipesH from 2 to 11. For a given period of 

the channels and pipes in the porous flow medium, the porosity increases marginally with the increase of the width of the 

rectangular channels and radius of the circular pipes. One may also observe that the porosity of the flow medium is higher in 

Hagen-Poiseuille flow than in plane-Poiseuille flow when the periodH of the channels width/pipes radius lies between (i) 1 and 2 

(when 0.7h = ), (ii) 1 and 2.3 (when  0.8h = ), (iii) 1 and 2.6 when  0.9h =  and (iv) 1 and 2.9 when h = 1.0. The porosity of the flow 

medium is higher in-plane-Poiseuille flow than in Hagen-Poiseuille flow when the period of the channels/pipes lies from the 

respective endpoint of each of the four-channel width/pipe radius mentioned above till 11H = . From Figs. 12 (i) – 12 (iv), it is 

propounded that the porosity of the flow medium rises marginally with the rise of the parameter a of the uniform distribution. 
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( ) 0.8i a =  ( ) 0.85ii a =  

  

( ) 0.9iii a =  ( ) 0.95iv a =  

Fig. 12. Variation of porosity of the flow medium with the period of channels/pipes distribution when the pores in the channels/pipes follow uniform 

distribution for different values of width of channel/radius of pipe. ( ) ( ) ( )0.8, 0.85, 0.9i a ii a iii a= = = and ( ) 0.95iv a = . 

  

  

(a) Linear distribution of Type I. (b) Linear distribution of Type II. 

Fig. 13. Variation of porosity/permeability of the flow medium with the period of channels/pipes distribution when the pores in the channels/pipes 

follow the linear distribution of Type I and Type II for different values of width of channel/radius of pipe. 
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Fig. 14. Variation of porosity of the flow medium with the period of channels/pipes distribution when the pores in the channels/pipes follow 

quadratic distribution for different values of channel width/pipe radius. 

  

( ) 0.8i a =  ( ) 0.85ii a =  

  

( ) 0.9iii a =  ( ) 0.95iv a =  

Fig. 15. Variation of permeability of the flow medium with the period of channels/pipes distribution when the pores in the channels/pipes follow 

uniform distribution for different values of width of channel/radius of pipe. ( ) ( ) ( )0.8, 0.85, 0.9i a ii a iii a= = = and ( ) 0.95iv a = . 
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The variations which are observed in Figs. 12 (i) to 12 (iv) for the porosity of the flow medium with respect to the period of 

channels and pipes parameterH and, channels width and pipe radius parameter h , are also observed from Figs. 13 (a), 13 (b) and 

(14) when the pores distribution in channels and pipes follow linear distribution of Type I, linear distribution of Type II and 

quadratic distribution respectively. From Figs. 13 (a) and 13 (b), one can find that the porosity of the flow medium is significantly 

higher when the pores in the medium of flow are distributed in the linear distribution of Type I than in the linear distribution of 

Type 2.  

3.7 Permeability of the flow medium 

Figs. 15 (i) – 15 (iv) delineates the variation of permeability of the flow medium with the period H  of channels/pipes 

distribution when the pores in the channels/pipes follow uniform distribution for different values of width of channels/radius of 

pipes with ( ) 0.8,i a =  ( ) 0.85,ii a =  ( ) 0.9iii a =  and ( ) 0.95iv a = . It is clear that the flow medium’s permeability decreases 

significantly with the rise of the period of channels and pipes from 1 to 2, and then it decreases very slowly when the periodH of 

the channels and pipes increases from 2 to 11. One may also note that the permeability of the flow medium rise considerably 

with the rise of the channels width and pipe radius when all of the other parameters are treated as invariables. When the 

parametersH and h were held fixed, the permeability of the flow medium marginally rises with the raise of the parameter a of the 

uniform distribution. It is noted that the permeability in the flow medium is marginally higher for plane-Poiseuille flow than in 

the Hagen-Poiseuille flow.  

The kind of variations which are observed in Figs. 15 (i) to 15 (iv) for the permeability of the flow medium with respect to the 

period of channels and pipes parameterH and, channels width and pipe radius parameter h , are also noticed from Figs. 16 (a), 16 

(b) and Fig. 17, when the pores distribution in channels and pipes follow the linear distribution of type I, linear distribution of type 

II, and quadratic distribution, respectively. From Figs. 16 (a) and 16 (b), one can point out that the permeability of the flow medium 

is considerably higher when the pores in the flow medium are distributed in the linear distribution of Type I than in the linear 

distribution of Type II. 

  

(a) Linear distribution of Type I. (b) Linear distribution of Type II 

Fig. 16. Variation of permeability of the flow medium with the period of channels/pipes distribution when the pores in the channels/pipes follow the 

linear distribution of Type I and II for different values of semi-width of channel/radius of pipe. 

 

Fig. 17. Variation of permeability of the flow medium with the period of channels/pipes distribution when the pores in the channels/pipes follow 

quadratic distribution for different values of semi-width of channel/radius of pipe. 
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3.8 Discussion on the linear distributions of pores size 

     From Figs. 10(a), 10(b), 13(a), 13(b) 16 (a) and 16 (b), it is observed that the porosity and permeability of the flow medium are 
considerably higher when the pores in the flow medium are distributed in the linear distribution of Type I than in the linear 

distribution of Type II, and this behavior is revered for mean velocity. This is due to the fact that the gradient d dψ γ  of the Type I 

and Type II of the linear distribution pores are positive and negative respectively (i.e., the pore size increases with the channels 
widths ratio/pipes radii ratio parameter γ  in Type I of linear distribution, while it decreases with γ  in Type II of linear distribution). 

Thus, for a given value of γ , the pore size in Type I of linear distribution of pores is larger than that in Type II of linear distribution 

of pores, hence the porosity and permeability of fluid (amount of fluid observed by the pores) in Type I of linear distribution of 
pores are significantly higher than those in Type II of linear distribution of pores. Hence, the mean velocity of the fluid in the flow 
through channels/pipes in which the pores size distribution follows Type II of linear distribution of pores is significantly higher 
(almost double) than the fluid’s mean velocity in channels/pipes in which the pores size distribution follows Type I of linear 
distribution of pores.                 

4. Conclusions 

In this mathematical analysis, the influence of various flow parameters on the rheological measures was investigated in the 
plane-Poiseuille flow and Hagen-Poiseuille flow of Casson fluid through a porous medium consisting of (i) single-channel/pipe 
and (ii) multiple–channel/multiple-pipe when the pores in the multiple-channels/multiple-pipes are distributed in (i) uniform 
distribution, (ii) linear distribution of Type I, (iii) linear distribution of Type II and (iv) quadratic distribution. The main finding of 
this study are collated hereunder: 

 When the pressure gradient rises, the Buckingham-Reiner function (flow rate) raises slowly in plane-Poiseuille flow, 
whereas in Hagen-Poiseuille flow, it rises rapidly. 

 At a given level of pressure gradient, the Buckingham-Reiner function has markedly higher value in the Hagen-Poiseuille 
flow than in plane-Poiseuille flow. 

 In all kinds of distribution of pores, the fluid’s mean velocity and porosity of the flow medium are appreciably higher in 
Hagen-Poiseuille flow than in plane-Poiseuille flow, and this behavior is reversed for the permeability of the flow medium. 

 With the rise of the pressure gradient, the mean velocity raises linearly in plane-Poiseuille flow; but in Hagen – Poiseuille 
flow, it soars up when the pressure gradient rises from 1 to 2.5 and then it increases slowly with the rise of pressure 
gradient from 2.5 to 5. 

 The fluid’s mean velocity, porosity, and permeability of the flow medium rises considerably with the increase of the 
channel width and pipe radius. 

 The fluid’s mean velocity, porosity, and permeability of the flow medium increase marginally with the rise of the uniform 
distribution parameter a . 

 The porosity of the flow medium slumps with the rise of the periodH of the channels and pipes distribution from 1 to 2, 
and it decreases very slowly with the further rise of the period of the channels and pipes H  from 2 to 11.  

 The porosity and permeability of the flow medium are considerably higher when the pores in the flow medium are 
distributed in the linear distribution of Type I than in the linear distribution of Type II, and this behavior is revered for mean 
velocity.       

Given the results obtained in this study, it is hoped that the present mathematical analysis would provide a better 
understanding to the readers on the rheological characteristics of non-Newtonian fluid flow through porous media in which the 
distribution of pores follow different kinds of probability distribution. It is further believed that this study would motivate the 
readers to do further research in this field and also to produce more novel results.      
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Nomenclature 

F  Darcy velocity 
C N

u u  in plane-Poiseuille flow a  Parameter associated with the uniform distribution 

G  Darcy velocity 
C N

u u  in Hagen-Poiseuille flow f  Buckingham-Reiner law for plane-Poiseuille flow 

H  Period of the pattern of channels/pipe g  Buckingham-Reiner law for Hagen-Poiseuille flow 

K  Permeability of the flow medium h  Semi-width / radius of the channel/pipe  

N  Number of channel/pipes 
C

u  Axial velocity of Casson fluid 

p  Pressure in the fluid flow through channel/pipe 
N

u  Axial velocity of Newtonian fluid 

Q  Volumetric flow rate in channel/pipe r  Radial coordinate in polar coordinates 

y  Vertical coordinate in Cartesian coordinates x  Horizontal coordinate in Cartesian coordinates 

z  Axial coordinate in polar coordinates   

    Greek symbols 

Ω  Negative of the pressure gradient γ  Channel width/ pipe radius relative to h  
µ  Dynamic viscosity ∈  Unyielded portion of the pipe/channel 

σ  Dimensionless pressure gradient τ  Shear stress 

φ  Porosity of flow medium 
y
τ  Yield stress 

    Subscript 

C  Casson fluid y  Yield stress 

N  Newtonian fluid pt  Pseudo-thresholds of stress  

Appendix 

Hagen-Poiseuille flow of Casson fluid 

 Let us consider the Hagen-Poiseuille flow of Casson fluid through a circular tube of uniform radius h . The rate of flow of 
Casson fluid in a single channel (analogous to that of Eq. (8)) is: 

( ) ( )
4 3

0 0

2 2 ,
8 4

h h h

pl

h

h h
Q udr r u dr r udr g g

π π
π σ σ σ

µ µ

∈

∈

  Ω Ω = = + = = 
  

∫ ∫ ∫  (A1) 

where 

( )
5 2 4

8 4 8 31
1 if 1

3 3 217 .

0 if 1

g
σ

σ σ σσσ

σ

 − + − + >=  >

 (A2) 

The function ( )g σ  obtained in Eq. (A1) is the Buckingham-Reiner function (formula) for the Hagen- Poiseuille flow of Casson 

fluid. The Darcy velocity of Casson fluid Cu  for one period of the pattern of tubes is obtained as below: 

( ) ( )
2

,
8C

h K
u g g

φ
σ σ

µ µ

Ω Ω
= =  (A3) 

where 

2 2

2
and ,

8

h h
K

H

π φ
φ = =  (A4) 

When 1σ >>  the normalized mean velocity ( )g σ  reduces to the following quadratic form: 

( ) ( ) ( ) ( )2 332 89
1 1 ...., 0 1 1

3 3
g σ σ σ σ= − − − + < − <<  (A5) 

For a significantly large value of ( )1σ σ >> , Eq. (A2) yields the three-term approximation to the induced flow as given in Eq. 

(A6).   

( ) 8 4
.

7 3
gσ σ σ σ≈ − +  (A6) 

For the porous medium, which has multi-tubes of radii , 1,2,...,i h i Nγ = , the Darcy velocity of Casson fluid in relation to 

Newtonian fluid, porosity, and permeability of the flow medium are given by Eqs. (A7) – (A9), respectively. 

( ) ( )4 4

1 1

.
N N

C N i i i
i i

u u G gσ γ γ σ γ
= =

 
 = =   
∑ ∑  (A7) 

( )22 2

1

N

i
i

h Hφ π γ
=

= ∑  (A8) 
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( )2 4 2

1 1

8 .
N N

i i
i i

K hφ γ γ
= =

 
 =   
∑ ∑  (A9) 

The pseudo-threshold σ  for the porous medium with N  channels per period is given below: 

3 4

1 1

4 3 .
N N

p t i i
i i

σ γ γ
= =

= ∑ ∑  (A10) 

When probability density functions ( )ψ γ  are used to describe the distribution of radius of circular tubes in a porous medium, 

then the Darcy velocity of the flow, porosity, and permeability of the flow medium are defined by Eqs. (A11) – (A13), respectively 
[37]:  

( ) ( ) ( ) ( )4 4

0 0

,C

N

u
F g d d

u
σ γ ψ γ γ σ γ γ ψ γ γ

∞ ∞

= = ∫ ∫  (A11) 

( ) ( )22 2

0

,h H dφ π γ ψ γ γ

∞

= ∫  (A12) 

( ) ( ) ( ) ( )2 4 2

0 0

8 ,F h d dσ φ γ ψ γ γ γ ψ γ γ

∞ ∞

= ∫ ∫  (A13) 

(a) Uniform distribution of pores 

When the pores of circular tubes are uniformly distributed (as given in Eq. (28)), the expression for the Darcy velocity of the 
flow, porosity, and permeability of the flow medium is obtained as Eqs. (A14) – (A16), respectively: 

( )
( )

( )
( )

( )
( )

( )
( ) ( )

9 5 5 25 4

5 5

9 2 5 22 3

5 22 3 4 5 4 2 3 45

0 if 0 1

63 80 105 168 465 322
if 1 1

63 1

80 1 8 15 1 155 1
1 if

3 1 3 1 21 163 1

G a
a

a aa a a

aa a a a a a a a aa

σ

σ σ σ σ σ
σ σ

σ

σ
σ σ σσ

 ≤ < − + − − += ≤ ≤ − − −+ + + − + − + > + + + + − + + + +−

 (A14) 

( )22

2

1
,

3

a ah

H

π
φ

  + + =    
 (A15) 

( )
( )

2 3 42

2

1
.

8 5 1

a a a ah
K

a a

φ  + + + + =    + + 
 (A16) 

(b) Linear distribution of pores 

For the first kind of linear distribution (given in Eq. (33)) of the pores in the circular tube, the expressions for Darcy velocity, 
porosity, and permeability are obtained as in Eqs. (A17) – (A19), respectively.  

( ) 11 2 7 26 5

6

0 if 0 1

,385 480 616 880 3410 3051
if 1

385

G

σ

σ σ σ σ σ σ
σ

σ

 ≤ ≤=  − + − + − >

 (A17) 

2

2

1
,

2

h

H

π
φ

  =    
 (A18) 

22
.

3 8

h
K

φ  =    
 (A19) 

For the second kind of linear distribution (defined in Eq. (34)) of pores in the circular tube, the expressions for Darcy velocity, 
porosity, and permeability simplify to Eqs. (A20) – (A22). 

( ) ( )11 2 7 26 5 2

6

0 if 0 1

3 231 320 462 1056 5115 8470 4038
if 1

462

G

σ

σ σ σ σ σ σ σ
σ

σ

 ≤ ≤= − + − + − + >

 (A20) 
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2

2
,

6

h

H

π
φ =  (A21) 

22
.

5 8

h
K

φ  =    
 (A22) 

(c) Quadratic distribution 

When the pattern of the pores of the flow region is represented by quadratic distribution (defined in Eq. (41)), the expressions 
for Darcy velocity, porosity, and permeability of the flow medium simplifies to Eqs. (A23) – (A25). 

( ) 13 2 9 27 6 3 2

7

0 if 0 1

429 640 1001 3050 22165 55055 52494 17343
if 1

429

G

σ

σ σ σ σ σ σ σ σ
σ

σ

 ≤ ≤=  − + − + − + − >

 (A23) 

2

2

1
,

10

h

H

π
φ

  =    
 (A24) 

21
.

35 8

h
K

φ  =    
 (A25) 
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