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Abstract. In this article, numerical study of  nanofluid flow between two inclined planes is carried out under 
the influence of  magnetic field. Water-based nanofluid with nanoparticle of  Copper (Cu) is taken into 
consideration for the present investigation. An efficient numerical method namely Optimal Homotopy 
Analysis Method (OHAM) is employed to get an approximate series solution for the related governing 
differential equation. A new approach is proposed to determine the convergence controller parameters used in 
OHAM. For the validation of  the proposed technique, the convergence of  the obtained results is shown for 
different values of  involved parameters. Moreover, residual errors for the different number of  terms in the 
obtained series solution are represented graphically. Obtained numerical results from the proposed method 
are incorporated with the previous results and they are found to be in very good agreement. Impacts of  
involved parameters like nanoparticle volume fraction, Hartmann number and Reynolds number on non-
dimensional velocity are also discussed.  

Keywords: Jeffery-Hamel flow, Nanofluid, Numerical solution, Optimal Homotopy Analysis Method, Non-linear 

Ordinary Differential Equation. 

1. Introduction 

A fluid with suspended nanoparticles is known as nanofluid which is proposed by Choi [1]. These nanoparticles are 
generally made of  carbide, nitride, metal, oxide, etc. Suspension of  these nanoparticles in existing heat transfer fluids 

helps them to improve the thermal conductivity of  the fluid. Because of  higher thermal conductivity, nanofluid has more 
heat transfer capacity as compared to the traditional fluid. Due to its higher thermal conductivity, it has vast applications 
in the field of  science and engineering such as heat exchangers, petroleum reservoirs, geothermal systems, etc. 
From the last few years, nanofluid flow between plates is one of  the important applicable cases in fluid dynamics. Few 
researchers have shown interested to study the fluid flow between two vertical planes and also between inclined planes. 

In order to investigate such problems, one may need to solve related governing differential equations analytically or 
numerically. But in most cases, related differential equations are highly non-linear so it may not be possible to get 
analytical solutions. As such related non-linear differential equations need to be handled numerically by efficient 
methods. Fluid flow due to the natural convection between two plates having different temperatures has been studied by 
a few authors [2-5]. Recently, incompressible fluid flow through a convergent-divergent channel is taken the attention of  

many researchers. Jeffery [6] and Hamel [7] were the first persons to investigate the fluid flow between two inclined 
planes and as a result, it’s far referred to as Jeffery-Hamel problem. Jeffery-Hamel's problem has been studied extensively 
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by different researchers. 
Esmaili et al. [8] have applied the Adomian Decomposition Method (ADM) to obtain an approximation to the 

analytical solution for the Jeffery-Hamel problem. ADM has been employed by Sheikholeslami et al. [9] to investigate 
the Jeffery-Hamel problem for nanofluid under the influence of  high magnetic field. The effect of  nanoparticles on 

Jeffery-Hamel flow has been discussed by Moradi et al. [10] for nanoparticles of  alumina, titania, and copper. They have 
used the differential transformation method to handle the related non-linear differential equation. Umavathi and Shekar 
[11] have used the same method to observe the impact of  the magnetic field on the Jeffery-Hamel flow for nanofluid. 
Homotopy Analysis Method has been used by Moghimi et al. [12] to handle the differential equation related to magneto-
hydrodynamic (MHD) Jeffery-Hamel flow problem. Nourazar et al. [13] have used ADM to solve the governing 

equation for MHD Jeffery-Hamel flow of  non-Newtonian Casson fluid in a stretching/shrinking convergent/divergent 
channel. Jeffery-Hamel problem has been investigated extensively by Turkyilmazoglu [14], where the walls of  the 
stationary channels are permitted to stretch or shrink. Other numerical methods to handle the governing non-linear 
differential equation for fluid flow problems may also be found in [15-19].  Water-based nanofluids have been used by 
various authors to study nanofluid problems such as Turkyilmazoglu [20] has used water-based nanofluids to investigate 

the fully developed slip flow in concentric annuli via single and dual-phase nanofluid models. Turkyilmazoglu [21] has 
also used water-based nanofluid to study the cooling systems in Free and circular jets and noticed that the nanofluids 
indeed cool the system by increasing the nanoparticle volume fraction. Alsabery et al. [22] have used water-based 
nanofluids to study the natural convection of  a nanofluid in an inclined square enclosure consisting of  a porous layer 
and nanofluid layer. Boundary layer flow of  nanofluids has been discussed by Turkyilmazoglu [23], where he has used 
water-based nanofluid with nanoparticles of  Copper, Copper Oxide, Silver, Alumina and Titanium oxide.  

Liao [24-25] has proposed a new approximation technique namely Homotopy Analysis Method (HAM) based on 
homotopy in topology in order to handle non-linear differential equations. The main merit of  the homotopy analysis 
method is that its validity does not depend upon any small/large parameter involved in the non-linear differential 
equation. A generalized version of  HAM known as OHAM is discussed in [26] which contains more than one 
convergence controller parameters. In this article, a new approach is used to get numerical values of  the convergence 

controller parameters used in OHAM. Further, it is shown that the residual error tends to zero by taking more number of  
terms in the series solution.  

2. Formulation of Problem 

   Let us consider the flow of  nanofluid from a source or sink at a channel constructed by two rigid walls which are 

inclined at an angle of  2α as presented in Fig.1. The considered channel is said to be convergent or divergent 

accordingly as 0α <  or 0α > . It is considered that a magnetic field 0B  acts transversely to the fluid flow. For the 

present problem, we have assumed that the velocity is purely radial which depends only on r and θ  such that 

( ( , ),0)v u r θ= . It is also assumed that there is no magnetic field in the z-direction. The continuity, Navier-Stokes and 

Maxwell’s equations in polar co-ordinates may be written as [11]: 

( )( ), 0,
nf

ru r
r r

ρ
θ

∂
=

∂
 (1) 

( )( ) ( ) ( )( ) ( )
22 2

0

2 2 2 2 2

1 1 1 ( , )
( , ) , ( , ) , ( , ) ( , ),

nf

nf nf nf

BP u r
u r ru r u r u r u r u r

r r r rr r r r

μ σθ
θ θ θ θ θ θ

ρ ρ θ ρ

 ∂ − ∂ ∂ ∂ ∂  = + + + − −  ∂ ∂ ∂∂ ∂ 
 (2) 

( )( )2

1 2
, 0

nf

nf nf

P
u r

r r

μ
θ

ρ θ ρ θ

∂ ∂
− =

∂ ∂
 (3) 

Here ( ),u r θ  is radial velocity, P  is the fluid pressure, 0B  stands for electromagnetic induction, σ  denotes 

conductivity of  the fluid, 
nfρ  and 

nfμ  stand for effective density and effective dynamic viscosity of  nanofluid 

respectively. The parameters 
nfρ  and 

nfμ  may be expressed as [5,27,28]: 

(1 ) ,nf f sρ ρ ρ= − +   (4) 

( )2.5
1

f

nf

μ
μ =

−
 (5) 
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Fig 1. Graphical representation of  the problem. 

Here   denotes nanoparticle volume fraction. The boundary conditions are given as: ( , ) / 0u r θ θ∂ ∂ =  at the center 

and ( , ) 0u r θ =  at the boundary of  the channel. Considering only radial flow, from the continuity equation we may 

obtain: 

( ) ( ) ( )
( )

, ,
f

ru r f u r
r

θ
θ θ θ= ⇒ =  (6) 

In order to non-dimensionalize the governing differential equation, let us introduce dimensionless parameters as 

/η θ α=  for dimensionless degree and max( ) ( ) /F f fη θ=  for dimensionless velocity parameter. Now by eliminating 

pressure term from Eqs. (2) and (3) and with the help of  Eqs. (4) - (6) and defined dimensionless parameters, the 
dimensionless governing differential equation may be obtained as: 

( ) ( ) ( ) ( ) ( )( ) ( )2.5 22.5 22 . . .(1 ) 4 1 0F Re A F F Ha Fη α η η α η′′′ ′ ′+ − + − − =   (7) 

where Re denotes Reynolds number, Ha  stands for Hartmann number which controls magnetic effect and A  is the 

ratio of  effective density of  nanofluid and density of  the base fluid. These parameters are expressed as: 

max maxf f

f f

f U r
Re

ρ α ρ α

μ μ
= = , ( )

2
2 0

f

B
Ha

σ

μ
=  and ( )1

nf s

f f

A
ρ ρ

ρ ρ
= = − +   (8a) 

and the boundary conditions may be reduced to: 

( )(0) 1, (0) 0, 1 0F F F′= = =   (8b) 

The boundary condition (1) 0F =  indicates that the no-slip condition holds at the wall. Moreover, from 

(0) 1, (0) 0F F ′= = , it may be observed that the dimensionless velocity has a maximum value at the centerline of  the 

channel and hence its derivative is zero at the centerline. Some thermophysical properties of  nanofluid used in further 
discussion are given in Table 1 [11, 28]. 

Table 1. Thermophysical properties of  water and nanoparticles of  copper. 

Property Pure water Copper 

2( / )kg mρ  997.1 8933 

( / )Nm sμ  31 10−×  - 
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3. Methodology 

   In order to express the basic concept of  OHAM for handling nonlinear ordinary differential equation, let us consider 
the nonlinear differential equation: 

( ( )) ( ( )) ( ) 0L u x N u x g x+ + =  

( ( )) 0B u x = , x Ω∈ . 
(9) 

where L  and N denote linear and nonlinear parts of  the differential equation respectively. Here x  is the independent 

variable, ( )u x
 
is an unknown function, ( )g x  is a known analytic function and B is a boundary operator. From Liao 

[26], in a generalized version of  HAM known as OHAM the zeroth-order deformation equation is given as: 

[ ] [ ] [ ]1 0 21 ( ) ( , ) ( ) ( ) ( ( , )) ( ( , )) ( )A p L x p u x hA p L x p N x p g xφ φ φ− − = + +�  (10) 

where 0 ( )u x  is an initial approximation of  ( )u x  satisfying the given boundary condition, p  is an embedding 

parameter lies in [0, 1]  and 1( )A p and 2 ( )A p are analytic functions satisfying 1 2(0) (0) 0A A= = and 1 2(1) (1) 0A A= = . 

Clearly p  is nothing but a special case of  1( )A p  and 2 ( )A p . As such the zeroth-order deformation in HAM is a 

special case of  Eq. (10), where 1 2( ) ( )A p A p p= = . Moreover, the homotopy perturbation method (HPM) is a special 

case of  Eq. (10), where 1 2( ) ( )A p A p p= =
 
and convergence controller parameter 1h =− . In this method, by 

following Marinca et al. [29-30], we have considered 1( )A p p=  and 2 ( ) ( )hA p H p=  in eq. (10). As such zeroth-order 

deformation may be written as: 

[ ] [ ] [ ]01 ( , ) ( ) ( ) ( ( , )) ( ( , )) ( )p L x p u x H p L x p N x p g xφ φ φ− − = + +  (11) 

Here ( )H p  is called convergence controller function satisfying  (0) 0H =  and (1) 0H ≠ . By putting 0p =  and 

1p =  in eq. (11), we will get 0( ,0) ( )x u xφ =  and ( ,1) ( )x u xφ = respectively. It may be worth mentioning here that 

when p varies from zero to one the solution ( , )x pφ  varies from 0 ( )u x  to the solution ( )u x . Now expand ( , )x pφ  

and ( )H p in Maclaurin’s series of  p as: 

0

( , ) ( ) n

n

n

x p u x pφ
∞

=

=∑  and 
1

( ) k

k

k

H p c p
∞

=

=∑  (12) 

Assuming that these two series in eq. (12) are convergent at 1p = , we may have the solution: 

0

0 1

( ) ( ,1) ( ) ( ) ( )n n

n n

u x x u x u x u xφ
∞ ∞

= =

= = = +∑ ∑  (13) 

According to Liao [24], by plugging eq. (12) in eq. (11) and equating coefficients of  np  from both sides of  the resulting 

equation we will get thn order deformation. Now by solving the differential equations obtained in thn  ( 0,1,2,3...)n =  

order deformation with appropriate boundary conditions, we may get 0 ( )u x  and nu  as a function of  1 2 3, , , ,..., nx c c c c  

i.e. 1 2 3( , , , ,..., )n nu x c c c c .  

As such the thn  order approximate solution of  Eq. (9) may be expressed as: 

0 1 2

1

( ) ( , , ,..., )
n

n m m

m

u u x u x c c c
=

= +∑%  (14) 

Here it may be noted that the thn order approximate solution depends upon the convergence controller parameter vector 

1 2 3( , , ,..., )n nc c c c c=
ρ

. It is worth mentioning here that eq. (14) is an approximate solution of  Eq. (9), so when we 

substitute this solution in eq. (9) an error known as the residual error will exist that is: ( ) ( ) ( ) 0n n nR L u N u g x= + + ≠% %  

for thn  order approximation. 

Now the continuous summation of  the squared residual for thn  order approximation over the given domain may be 

expressed as: 

{ } { }2 2
( ) ( ) ( ) ( )n n n n nS c R dx L u N u g x dx

Ω Ω

= = + +∫ ∫
ρ

% % , 1,2,3,...n =   (15) 

Marinca et al. [29-30] have determined the optimal points 1 2 3, , ,..., nc c c c  by minimizing the square residual error in eq. 

(15) for the thn  order approximation such that: 
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( )1 2 3, , ,...,
0, 1,2,3,...

n n

i

S c c c c
i

c

∂
= =

∂
 (16) 

Here we need to solve n coupled algebraic equations to get the optimal points 1 2 3, , ,..., nc c c c . As such by increasing the 

number of  terms, we have to solve more numbers of  nonlinear coupled algebraic equations. For large n it will become 

more and more difficult and will be time-consuming to solve for 1 2 3, , ,..., nc c c c .   

3.1 Finding of Convergence Controller Parameters 

To overcome the above disadvantage, let us minimize the square residual error at each order of  approximation to 

calculate convergence controller parameters one at a time. As such, we need to solve one algebraic equation at thn  order 

approximation for the convergence controller parameter nc .  

The procedure to calculate the values of  convergence controller parameters is by following the least square technique 

[31-32]. 

For 1st order approximation, square residual error 1R  contains only one convergence controller parameter 1c . As such 

for the optimal value of  1c , let us apply the least square technique to minimize the continuous summation of  the 

squared residual error 1S  that is: 

{ }21 1
1 1

1 1 1

1
1

1

0 2 . 0

. 0.

dS dRd
R dx R dx

dc dc dc

dR
R dx

dc

Ω Ω

Ω

= ⇒ = =

⇒ =

∫ ∫

∫
 (17) 

The optimal value 1c may be obtained from the algebraic eq. (17). Further in 2nd order approximation, 2R  contains 

both 1c  and 2c . But from the previous step, we already have the optimal value 1c . As such by following the previous 

step, the optimal value of  2c  may be found from the algebraic equation: 

2 2
2

2 2

0 . 0.
dS dR

R dx
dc dc

Ω

= ⇒ =∫  (18) 

By proceeding like this, at the thn  order approximation nS  consists of  only one unknown parameter nc  whose 

optimal value can be determined directly from the algebraic equation: 

0 . 0.n n

n

n n

dS dR
R dx

dc dc
Ω

= ⇒ =∫  (19) 

Now by plugging the optimal values of  convergence controller parameters in eq. (14), we may get the thn  order 

approximation solution of  eq. (9).    

4. Application to the Present Problem 

For simplicity, let us consider the notations 2.52 . . .(1 )a Re Aα φ= −  and 2.5 2 2(4 (1 ) )b Haφ α= − −  in eq. (7). Now eq. 

(7) can be written as: 

( ) ( ) ( ) ( ). . 0F a F F b Fη η η η′′′ ′ ′+ + =  (20) 

Now we apply the above discussed method to solve eq. (20). By considering the linear operator as ( )F η′′′ , zeroth-order 

deformation for eq. (20) may be constructed as: 

(1 ) ( ) ( ) ( ) ( ) ( ) ( )p F H p F aF F bFη η η η η ′′′ ′′′ ′ ′− = + +   (21) 

The next step is to substitute the convergence controller function 
1

( ) k

k

k

H p c p
∞

=

=∑ and assumed the series solution 

0

( , ) ( ) n

n

n

F p F pη η
∞

=

=∑  in eq. (21). 

0 1 0 0 0 0

(1 ) ( ) ( ) ( ) ( ) ( )n k n n n n

n k n n n n

n k n n n n

p F p c p F p a F p F p b F pη η η η η
∞ ∞ ∞ ∞ ∞ ∞

= = = = = =

    ′′′ ′′′ ′ ′− = + +        
∑ ∑ ∑ ∑ ∑ ∑  (22) 



Jeffery-Hamel Flow for Nanofluid in Presence of  Magnetic Field  
 

Journal of  Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 48-59 

53 

{ }
( ) { }

{ }{ }
{ }

2

0 1 2

2 3 2

1 2 3 0 1 2

2 2

0 1 2 0 1 2

2

0 1 2

(1 ) ( ) ( ) ( ) ...

... ( ) ( ) ( ) ...

( ) ( ) ( ) ... ( ) ( ) ( ) ...

( ) ( ) ( ) ...

p F F p F p

c p c p c p F F p F p

a F F p F p F F p F p

b F F p F p

η η η

η η η

η η η η η η

η η η

′′′ ′′′ ′′′⇒ − + + +

 ′′′ ′′′ ′′′= + + + + + +
′ ′ ′+ + + + + + +

′ ′ ′+ + + + 

 

Equating coefficient of  the same power of  p from both sides of  eq. (22), we may obtain: 

0

0: 0p F ′′′=  (23) 

and the boundary conditions will be: 

( )0 0 0(0) 1, (0) 0, 1 0F F F′= = =  

 

(24) 

{ }
{ }

1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

: ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

p F F F a F F bF c

F F F a F F bF c

η η η η η η

η η η η η η

′′′ ′′′ ′′′ ′ ′− = + +

′′′ ′′′ ′′′ ′ ′⇒ = + + +
 (25) 

and boundary conditions are: 

( )1 1 1(0) 0, (0) 0, 1 0F F F′= = =  (26) 

{ } { }
{ } { }

2

2 1 1 0 1 0 1 1 1 0 0 0 0 2

2 1 1 0 1 0 1 1 1 0 0 0 0 2

: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

p F F F a F F a F F bF c F a F F bF c

F F F a F F a F F bF c F a F F bF c

η η η η η η η η η η η η

η η η η η η η η η η η η

′′′ ′′′ ′′′ ′ ′ ′ ′′′ ′ ′− = + + + + + +

′′′ ′′′ ′′′ ′ ′ ′ ′′′ ′ ′⇒ = + + + + + + +
 (27) 

and boundary conditions are: 

( )2 2 2(0) 0, (0) 0, 1 0F F F′= = =  (28) 

{ }
{ }
{ }

3

3 2 2 0 2 1 1 0 2 2 1

1 0 1 0 1 1 2

0 0 0 0 3

: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p F F F a F F a F F aF F bF c

F a F F aF F bF c

F a F F bF c

η η η η η η η η η η

η η η η η η

η η η η

′′′ ′′′ ′′′ ′ ′ ′ ′− = + + + +

′′′ ′ ′ ′+ + + +

′′′ ′ ′+ + +

 

(29) 

{ }
{ }
{ }

3 2 2 0 2 1 1 0 2 2 1

1 0 1 0 1 1 2

0 0 0 0 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F F F a F F a F F aF F bF c

F a F F aF F bF c

F a F F bF c

η η η η η η η η η η

η η η η η η

η η η η

′′′ ′′′ ′′′ ′ ′ ′ ′⇒ = + + + + +

′′′ ′ ′ ′+ + + +

′′′ ′ ′+ + +

 

with boundary conditions as: 

( )3 3 3(0) 0, (0) 0, 1 0F F F′= = =  (30) 

and so on. Solving Eq. (23) with the boundary conditions (24), we may get: 

2

0 1F η= −  (31) 

Again from eq. (25) with boundary conditions (26) we will obtain: 

( ) 26
2

1 1
60 12 15 12

a ba a b
F c

ηη
η

  +   = − + +       
 (32) 

Further from eq. (27) and boundary conditions (28), it may be found that: 

( ) ( )

( )( )

2 22 2 2
1 1 210 8 2 61

2 1

2 2
1 22 4

1

2 2

5400 560 200 120 60 360 60

180 144 80 12 12 12

163

75600 240 168 15 12

a ab c c c aa c a ab a b
F c

a b c ca b ab a b
c

a b ab a b

η η η

η

 +   +− −   = + + − + − +      
   + +  + + + − − −      
  − + + − − 

( )1 22 22
1 .

15 12

c c a bc
c η

  + − −    

 (33) 
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By proceeding like this we may get the functions 1 2 3( , , ,..., )n nF c c c c . The thn order approximate solution of  Eq. (20) may 

be obtained as: 

0 1 1 2 1 2 3 1 2 3 1 2 3( ) ( ; ) ( ; , ) ( ; , , ) ... ( , , ,..., )n nF F F c F c c F c c c F c c c cη η η η= + + + + +  (34) 

Further as discussed in the previous section, the least-square technique may be used to find convergence controller 

parameter 1c  in 1st order of  approximation, 2c  in 2nd order of  approximation, 3c  in the 3rd order of  approximation 

and so on. The procedure is now discussed below by taking particular values of  the parameters involved in the governing 

differential equation. 

5. Results and Discussions 

Let us consider 050, 5 , 0, 0Re Haα= = = = . In order to compute values of  unknown convergence controller 

parameters 1 2 3, , ,..., nc c c c , firstly consider 1st order approximation to compute 1c  that is: 

( ) 26
2 2

11
60 12 15 12

a ba a b
F c

ηη
η η

  +   = − + − + +       
 (35) 

Here the residual error function 1R  may be obtained as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 2 4 25
1 11 121

1

2 2 3 5 3
1 1 1 1 1

5 5 5 54 5 4 5
2 . 1

15 30 30 60 60

2 5 5 5 5 4 5 8
2 .

5 15 30 30 5

c a b a c a b ac a b c a bac
R a

c a b a c a b a c a b ac ac
b

η η η ηη ηη
η η

η η η η η η η
η

   + − + −+ +   = + − − + − −   
      

 + − + − + − − + − − + 
  

 (36) 

Substituting eq. (36) in eq. (17) and solving the obtained algebraic equation for 1c , we may get the value of  1c  as 

1 0.914259839666614c =− . In order to compute 2c , let us consider 2nd order approximation as: 

( )

( ) ( )

( )( )

26
2 2

1

2 22 2 2
1 1 210 8 2 61

1

2 2
1 22

1

1
60 12 15 12

5400 560 200 120 60 360 60

180 144 80 12 12 12

a ba a b
F c

a ab c c c aa c a ab a b
c

a b c ca b ab a b
c

ηη
η η

η η η

  +   = − + − + +       
 +   +−   − + + − + − +      

  + + + + + − − −   

( )

4

2 2
1 22 22

1

163

75600 240 168 15 12 15 12

c c a bca b ab a b
c

η

η

   
   +  − + + − − − −      

 (37) 

where 1 0.914259839666614c =− . Hence in this step, we have only one unknown parameter 2c . By finding the residual 

error function 2R  and solving the algebraic equation obtained from eq. (18) we may get 2 0.024720757858145c = . 

By proceeding like this we may get values of  convergence controller parameters as: 

3 4 5

6 7 8

0.004491893350062, 0.000855995207881, 0.000185539579073,

0.000043477431212, 0.000010412129498, 0.000002447979037.

c c c

c c c

= = =

= = =
 (38) 

Finally by plugging the values of  these convergence controller parameters in eq. (34), we may get the approximate 

solution of  Eq. (20). In Table 2, we have presented obtained numerical results of  non-dimensional velocity when 
050, 5 , 0, 0Re Haα= = = = . For a convergent channel that is taking 0,α <  Table 3 consists of  the velocity profile 

when 080, 5 , 0, 0Re Haα= =− = = . From both these Tables 2 and 3, it may be seen that for both divergent and 

convergent channel we are getting convergent results by using the proposed method. Figures 2 and 3 depict the residual 
errors for divergent and convergent channels respectively at different orders of  approximation. It is clear from these 
figures that with an increase in the number of  terms in the series solution, the residual error decreases rapidly and 

moreover it tends to zero. This shows the accuracy of  the proposed method. For the support of  present results, Figs. 4 
and 5 represent comparison graphs of  obtained results with the numerical results given in Moradi et al [10] by the 
Runge-Kutta scheme. From these figures, we may confirm that the obtained results maintain a very good agreement with 
the previous results.  



Jeffery-Hamel Flow for Nanofluid in Presence of  Magnetic Field  
 

Journal of  Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 48-59 

55 

R
e
s
iu

a
l 

E
r
r
o

r

 

Fig. 2. Residual error at different numbers of  terms in series solution when 050, 5 , 0, 0Re Haα= = = = . 

 

Fig. 3. Residual error at different numbers of  terms in series solution when 080, 5 , 0, 0Re Haα= =− = = . 

 
Fig. 4. Comparision between present result for divergent channel and existing result where 050, 5 , , 0Re Haα φ= = = = . 

Impacts of  different parameters viz. Reynolds number, Hartmann number and volume fraction on non-dimensional 
velocity profile have been investigated graphically. Here copper-water nanofluid has been taken into consideration to 
observe the impacts of  these parameters. In Fig. 6 we have shown velocity values for different Reynolds number and 
fixed values of  ,Ha 

 
and α . From this figure, it may be confirmed that the velocity profile for copper-water nanofluid 

decreases with an increase in the Reynolds number. To show the effect of  the magnetic field, velocity profiles for 
different values of  Hartmann number and fixed values of  ,Re  and α  have been presented in Fig. 7. It may be seen 

from this figure that the velocity profile has increasing nature with an increase in the Hartmann number. From Fig. 8 we 
may observe the effect of  volume fraction on the velocity profile. It may be confirmed from this figure that velocity 
decreases with an increase in volume fraction.  



 U. Biswal and S. Chakraverty, Vol. 8, No. 1, 2022 
 

Journal of  Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 48-59   

56 

 

Fig. 5. Comparision between present result for convergent channel and existing result where 080, 5 , 0, 0Re Haα= =− = = . 

 

Fig. 6. Effect of  Re on velocity profile for copper-water nanofluid when 05 , 0.1, 30Haα = = = . 

Table 2. Non-dimensional velocity profile for different orders of  approximation when 050, 5 , 0, 0Re Haα= = = = . 

η  Velocity profile for different order of  approximation 

1st 2nd 3rd 4th 5th 6th 7th 8th 

0.0 1 1 1 1 1 1 1 1 
0.1 0.98472 0.98306 0.98261 0.98248 0.98245 0.98243 0.98243 0.98243 
0.2 0.93969 0.93350 0.93186 0.93141 0.93128 0.93124 0.93123 0.93122 
0.3 0.86723 0.85491 0.85176 0.85094 0.85070 0.85063 0.85061 0.85061 

0.4 0.77106 0.75273 0.74832 0.74721 0.74691 0.74682 0.74680 0.74679 
0.5 0.65607 0.63362 0.62859 0.62738 0.62707 0.62698 0.62695 0.62695 

0.6 0.52795 0.50458 0.49974 0.49862 0.49834 0.49826 0.49824 0.49823 
0.7 0.39278 0.37216 0.36817 0.36727 0.36704 0.36698 0.36697 0.36696 

0.8 0.25652 0.24171 0.23895 0.23833 0.23818 0.23813 0.23812 0.23812 
0.9 0.12436 0.11698 0.11558 0.11526 0.11518 0.11516 0.11515 0.11515 
1.0 0 0 0 0 0 0 0 0 

Table 3. Non-dimensional velocity profile for different orders of  approximation when 080, 5 , 0, 0Re Haα= =− = = . 

η  Velocity profile for different order of  approximation 

1st 2nd 3rd 4th 5th 6th 7th 8th 

0.0 1 1 1 1 1 1 1 1 

0.1 0.99679 0.99589 0.99595 0.99595 0.99596 0.99596 0.99596 0.99596 

0.2 0.98615 0.98303 0.98324 0.98324 0.98326 0.98326 0.98327 0.98327 
0.3 0.96508 0.95968 0.96005 0.96008 0.96013 0.96015 0.96016 0.96017 

0.4 0.92876 0.92261 0.92317 0.92331 0.92342 0.92346 0.92349 0.92350 
0.5 0.87092 0.86674 0.86770 0.86806 0.86826 0.86835 0.86840 0.86842 

0.6 0.78421 0.78491 0.78669 0.78740 0.78774 0.78791 0.78799 0.78804 
0.7 0.66081 0.66787 0.67089 0.67207 0.67261 0.67287 0.67300 0.67306 
0.8 0.49309 0.50493 0.50902 0.51060 0.51131 0.51164 0.51180 0.51189 
0.9 0.27438 0.28522 0.28889 0.29032 0.29095 0.29125 0.29140 0.29147 
1.0 0 0 0 0 0 0 0 0 
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Fig. 7. Effect of  Ha on velocity profile for copper-water nanofluid when 05, 5 , 0.1Re α= = = . 

 

Fig. 8. Effect of    on the velocity profile for copper-water nanofluid when 050, 80, 5Ha Re α= = = . 

6. Conclusion 

   The nanofluid flow between two inclined planes under the influence of  the magnetic field was investigated 
successfully. OHAM was used to get series solution of  the velocity profile. Optimal values of  the convergence controller 

parameters used in OHAM were determined one by one with the help of  the least square approximation technique. For 
the accuracy of  the proposed method, present results were compared with existing results for some special cases viz. for 
fixed values of  involved parameters and they were in good agreement. Moreover, the residual error tends to zero by 
increasing the number of  terms in the series solution. For copper-water nanofluid, it was observed that velocity decreases 
with an increase in Reynolds number whereas velocity increases with an increase in the Hartmann number. It was also 

seen that the velocity profile has decreasing nature with an increase in the volume fraction. 

Author Contributions 

All authors have equal contribution in all sections of  the manuscript. 

Acknowledgments 

The first author is thankful to the Council of  Scientific and Industrial Research (CSIR), New Delhi, India for the 
support and funding to carry out the present research work. 

Conflict of Interest  

The authors declared no potential conflicts of  interest with respect to the research, authorship, and publication of  this 
article. 

Funding  

The authors received no financial support for the research, authorship, and publication of  this article. 



 U. Biswal and S. Chakraverty, Vol. 8, No. 1, 2022 
 

Journal of  Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 48-59   

58 

Data Availability Statements 

The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request. 

Nomenclature 

r Radial coordinate θ  Angular coordinate 

v  Radial velocity α  Angle between plates 
P Pressure ρ  Density 

0B  Electromagnetic Induction μ  Dynamic viscosity 

F  Dimensionless velocity σ  Conductivity 

  Nanoparticle volume fraction η  Dimensionless degree 

Ha  Hartmann number Re  Reynolds number 

Subscript 

nf  nanofluid 

f  fluid 

s  solid 
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