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Abstract. The friction stir welding method is one of  the solid-state welding methods for non-homogeneous 
metals. In this study, the 5XXX series aluminum sample and pure copper are subjected to four passes friction 
welding process and then the mechanical and metallurgical properties of  the welded samples are compared 
with the prototype. For this purpose, the effect of  welding parameters including rotational speed, forward speed 
and pin angle of  the tool is tested by the full factorial method. In this process, hardness estimation and tensile 
testing are based on input process parameters in order to obtain mechanical properties is an important issue. 
For this purpose, a mathematical model of  mechanical properties must be defined based on the input process 
parameters. Due to the complex nature of  the effect of  input process parameters on mechanical properties, this 
modeling is a complex mathematical problem in which the use of  supervised learning algorithms is considered 
as an efficient alternative. In this paper, a new combination of  Relevance Vector Machine (RVM) and Support 
Vector Machine (SVM) is presented which has a higher degree of  accuracy. 

Keywords: Friction stir welding, Hardness, Support Vector Machine, Relevance Vector Machine 

1. Introduction 

Aluminum alloys have been developed in today's industries for use in structural applications, which are mainly 

classified into two major categories: aluminum cast alloys and used aluminum alloys. Aluminum 5 Series contains 4% 
magnesium and about 0.25% chromium in the production of  fuel and oil pipes, fuel tanks, chemical equipment requiring 
excellent corrosion resistance, good fatigue strength, weldability, and moderate strength. Freezing defects, the formation 
of  intermetallic compounds, and excessive heat applied to fusion welding processes have made these processes less 
attractive for bonding to non-homogeneous metals [1]. Bhamji et al. [2] succeeded in bonding aluminum 1050 to copper 

metal by frictional welding by examining and conducting experimental experiments on aluminum friction welding with 
copper. Mishra et al. [3] presented a new method of  friction welding with a new method for welding aluminum parts in 
which the heat generated increases as the rotational speed increases and most of  the heat generated in this method is 
supplied by combing of  shoulder friction with metal surface. On the other hand, the surface of  the shoulder prevents the 
heated area from contacting the environment with heat and oxidation of  the base metal. In a study by Mahoney et al. [4], 

the friction welding properties of  aluminum 7075 show that the high temperature of  this region affects the sediment and 
alloying elements. In a study of  the appearance and mechanical properties of  the friction welding of  copper-aluminum 
alloys, Liu et al. [5] showed that the different properties of  base metal and weld metal can produce oscillatory stresses in 
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the heat-affected areas and adjacent regions. These stresses cause fatigue in the weld area and eventually lead to crack 
development and damage to the joint. Ismaili et al [6] conducted experimental studies and experiments with friction 

welding, aluminum-to-copper sheets as well as aluminum and brass sheets, and found that by studying their mechanical 
and microstructural properties, they achieved the highest strength comes with 80% strength of  the aluminum base metal. 
They cited the reason for this proper coupling because of  the good flow of  materials and the creation of  narrow multilayer 
intermetallic compounds in the intermetallic joint. According to the studies carried out in this study, experimental 
experiments and 5xxx aluminum bonding to copper metal were carried out to obtain desirable results in mechanical 

properties and numerical modeling and algorithmic design of  hybrid enamel with Relevance Vector Machine (RVM) and 
Support Vector Machine (SVM) that are most capable of  predicting test results are discussed. 

2. The FSW Process 

Despite the suitability of  some solid-state bonding processes such as ultrasonic welding, penetration welding and 
explosive welding for non-homogeneous metal bonding, some limitations of  these processes such as geometrical 
constraints, special equipment requirements, and high cost have led to extensive research on processes Solid-state coupling 

to remove these limitations [7]. 
Due to the problems of  eliminating the problems caused by the melting heat in the welding pond, the frictional welding 
method was introduced, where the temperature in the welding zone is about 80% of  the melting temperature, which to 
overcome the problems caused by the melting of  aluminum alloys, the friction stir welding process was invented which 
was a solid-state welding process [8]. Problems arising from fusion welding include: 

1. When the metal is melted during welding, the rapid freezing of  non-equilibrium structures occurs after bonding. In fact, 
due to residual stresses, the structure becomes susceptible to cracking. Therefore, heat treatment must be performed on the 
components to modify the structure. In solid-state welding, no equilibrium structure is formed. 
2. When the metal melts, the gas dissolution rate is very high. In melting processes, the surface of  the melt is completely 
exposed to the surrounding environment and gas can be absorbed. These gases lower the solubility in the solid during 

freezing, and the melt becomes supersaturated. It is very difficult and almost impossible to remove these dissolved gases 
from the solid bulk. Hydrogen gas causes the worst case because it dissolves in the melt as a proton particle with high 
mobility. Hydrogen causes cold or late cracking. In solid-state welding, this problem is not due to the absence of  melt. 
3. During welding, non-uniform extensions and non-uniform contractions occur during freezing, resulting in tensile 
stresses that are susceptible to cracking; thus, in solid-state welding, the type of  stresses remaining in the joint season is the 

compressive stresses that eliminate the possibility of  crack propagation. 
The most important parameters of  friction stir welding are tool rotation speed, tool speed, and tool angle deviation. In the 
meantime, the junction tool performs the primary task of  warming the workpiece, moving the material to create the 
junction and also keeping the hot material under the front of  the tool. In the research, aluminum metal was bonded to 
copper metal by the friction welding process of  the weld and without flaws. However, most joints in the mechanical tests 
of  the weld line or contact surface of  the two metals fail and crack in the weld region. There are some reasons to justify 

this that the most important of  these can be the formation of  brittle intermetallic compounds as well as the formation of  
an oxide layer that has less strength in the vicinity of  intermetallic compounds [9 and 10]. Fig. 1 schematically illustrates 
the frictional stir welding process.  

 

Fig. 1. Schematic of  the friction stir welding process [5] 

3. Experimental Details 

  In this study, aluminum and pure copper sheets of  3 mm thickness were used and the mechanical properties of  base 
metals are shown in Table 1. The tools used were two types of  cylindrical and square pins of  H13 hot steel with a hardness 
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of  52 Rockwell. The FP4M milling machine manufactured in Tabriz was used to rotation and forward the tools. Tool 
geometry is the most important factor in the frictional welding process and plays the most important role in material flow. 
A friction stir welding tool consists of  a pin and a shoulder. The function of  the tool is to generate local heat and material 
flow. The first function is to generate heat at the beginning of  the pin's contact with the material due to friction. Some heat 
also comes from the plastic deformation of  material. The pin sinks as far as the shoulder sits on the workpiece surface. 

The friction between the shoulder and the workpiece at this stage produces much of  the heat of  the process. In terms of  
heat generation, the ratio of  pin and shoulder size is also important. However, other design parameters have little effect on 
the heat produced. The shoulder also determines the warming range of  the piece. The second function of  the tool is to 
rotate and move the material. The formation of  the microstructure and the resulting properties depend on the geometry 
of  the tool. A concave shoulder and threaded cylinder pin are commonly used. In the circular tool pin, the material's 
displacement volume is reduced by up to 60% and in the square tool by up to 70%. The advantage of  these designs is the 

reduction of  frictional force, the possibility of  moving part of  the material that has deformed the plastic, facilitating the 
collapsing motion of  the tool, and increasing the Intersection joint between the pin and the material that deforms the 
plastic, as more heat is produced. The main advantage of  these pins is the dynamic-to-static volume ratio, which is 
important for creating a proper path for material flow. Given the important geometrical effect of  the tool on the metal flow, 
the resulting microstructure, which is directly related to the flow pattern, will be different for each tool. 

Table 1. Mechanical properties of  base metals 

Mechanical Properties Cu Al 5XXX 

Tensile Strength (MPa) 392 223 

Yield Strength (MPa) 236 329 

Hardness (Vickers) 104 108 

 

 

Fig. 2. FP4M milling machine used in experimental tests 

Fig. 3. Hot steel welding cylindrical tool with square and cylindrical pin 
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In order to carry out the design of  experiments and to obtain an acceptable algorithm, it has been attempted to apply step 
by step the design process of  a full factorial experiment. To perform complete tests to achieve proper process control, a 

large amount of  testing must be performed. One of  the main goals of  test design methods is to select the best possible test 
mode that can be used to evaluate the process while justifying the number of  experiments, in the most desirable way 
possible the Minitab software is used. In this range, input variables have been studied and the maximum and minimum 
limits of  theory and practical constraints have been determined. Using the full factorial method, 72 experiments are 
presented in Table 2. The test pieces were prepared according to ASTM E8-04 standard for the tensile test and the test at 

a constant speed of  1 mm/min and a strain rate of  0.003 at room temperature for all welded specimens by the SANTAM 
STM-150 in Semnan University. 
The hardness of  the welded specimen was metallography according to ASTM-E384 by Vickers hardness test with Bohler 
machine at 250 g force for 10 seconds. Hardness was measured at five points 2 mm apart on the cross-section of  the welded 
specimen. 

 

Fig. 4. Schematic of  stretch specimens (in millimeters) according to ASTM E8-04 

 
Fig. 5. Micro hardness diagram of  welding samples in four different passes 

Table 2. Input parameters of  friction stir welding process 

Range Units Welding Parameters NO 

2-3 Degree Pin angle 1 

700-850-1000-1150 RPM/min Rotational speed 2 

22-40 mm/min Forward speed 3 
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Table 3. Empirical experiments and model obtained with effective parameters 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tensile Strength Hardness Pin Angle Rotational Speed Forward Speed Pin Geometry Exp. No 
162.8 95.4 4 700 40 Cylindrical 1 
164.7 96.1 3 700 32 Cylindrical 2 
165.1 98.2 2 700 27 Square 3 
166.8 96.01 2 850 40 Square 4 
169 98.3 2 1000 40 Square 5 

167.2 99.15 2 850 40 Cylindrical 6 
163.2 99.6 4 850 32 Cylindrical 7 
167.3 101.2 4 1150 27 Cylindrical 8 
168.9 100.5 3 1000 40 Square 9 
170.5 104.9 2 700 27 Cylindrical 10 
169.9 102.5 3 700 40 Cylindrical 11 
179.6 102.3 4 1000 32 Cylindrical 12 
166 99.2 2 700 32 Square 13 
183 99.8 4 1150 32 Square 14 

178.9 100 4 1150 40 Square 15 
170.1 105.3 4 1000 27 Cylindrical 16 
170.2 107.9 2 1150 32 Square 17 
190 100 4 850 32 Square 18 

175.3 98 4 1150 27 Square 19 
159 99.6 4 850 40 Square 20 
163 100.9 4 850 27 Cylindrical 21 

188.3 99.8 2 1150 27 Cylindrical 22 
171.1 97.5 2 850 32 Cylindrical 23 
187.3 100.1 3 1150 32 Square 24 
195 120.9 3 1150 27 Cylindrical 25 

189.6 118.9 3 1000 40 Cylindrical 26 
192 117.3 3 1150 32 Cylindrical 27 

187.6 115 4 1000 40 Cylindrical 28 
186.6 102.3 3 850 40 Cylindrical 29 
185 104.3 3 850 32 Cylindrical 30 
179 101.8 3 700 27 Square 31 

189.6 105.6 4 1150 32 Cylindrical 32 
188.3 107.7 4 1000 40 Square 33 
190.2 109.2 2 1000 32 Square 34 
191.2 104.9 2 1000 40 Cylindrical 35 
177.4 100 4 700 27 Cylindrical 36 
177.8 99.6 2 1000 27 Square 37 
180.1 101.3 2 1000 27 Cylindrical 38 
179.6 102.5 3 1150 40 Cylindrical 39 
181.9 108.9 2 1150 27 Square 40 
185.6 97.8 3 700 40 Square 41 
191.5 99.2 2 850 32 Square 42 
190 100 4 1000 32 Square 43 

188.2 95.6 2 700 40 Cylindrical 44 
190.1 98.8 3 850 27 Cylindrical 45 
189.5 97.2 4 700 27 Square 46 
190.2 99.2 3 700 27 Cylindrical 47 
187.3 97 3 700 32 Square 48 
188.3 99.1 4 850 27 Square 49 
185.3 95.9 3 850 27 Square 50 
187 97.9 4 1000 27 Square 51 

185.7 97.8 4 700 32 Cylindrical 52 
187.6 94.5 4 700 32 Square 53 
188.9 96.6 4 850 40 Cylindrical 54 
189.6 97.2 3 1000 27 Square 55 
191.1 99.8 2 1150 40 Square 56 
190 100 3 1150 27 Square 57 

202.5 110.8 2 1150 40 Cylindrical 58 
201.8 110 2 1150 32 Cylindrical 59 
197.4 98 2 850 27 Square 60 
190.3 97.1 3 1150 40 Square 61 
189.9 95.8 3 850 32 Square 62 
170.1 106.8 2 850 27 Cylindrical 63 
187.6 114.2 4 1150 40 Cylindrical 64 
187.3 116.1 3 1000 27 Cylindrical 65 
188 113.9 3 1000 32 Cylindrical 66 
97.8 97.2 4 700 40 Square 67 
100 98.6 2 700 32 Cylindrical 68 
98.8 100 2 700 40 Square 69 
99.9 100.3 3 1000 32 Square 70 
100.9 99.9 3 850 40 Square 71 
107.9 113.5 2 1000 32 Cylindrical 72 



A Hybrid SVM-RVM algorithm to mechanical properties in the Friction stir welding Process 41 
 

Journal of  Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 36-47 

According to the results of  the tests, the hardness of  the leading part was greater than that of  the back part, and the reason 
for this hardness was the same in the direction of  rotation and speed of  the tool, but in the opposite direction, they acted 

in the opposite direction. As a result, the heat generated by the leading side increases and the material trapped by the 
instrument undergoes severe deformation in the perturbation region, which increases the dynamic recrystallization drive 
force. With the increase of  the driving force, there are more reforms on the leading side than on the backside, and the 
leading part hardness increases. 
 

4. Models 

4.1 Supporter Vector Machine 

  In recent decades, rapid advances in information processing systems have triggered the need for systems that can learn 
from limited information and solve complex decision problems. The study and construction of  algorithms that are able to 
learn from and make predictions based on a limited set of  observed data are explored in a subfield of  computer science 

known as machine learning. In supervised learning, given a set of  N input vectors Xn and the corresponding targets tn, the 
goal is to learn a model of  the dependency of  the targets on the inputs in order to predict the targets in case of  unobserved 
inputs [11]. 
Support vector machines (SVMs) are supervised learning models with associated learning algorithms that analyse data 
and recognize patterns, used for classification and regression analysis. Structural risk minimization alongside with 

minimization of  empirical risk is the main advantage of  the SVMs over the neural networks resulting in a better 
generalization capability in many practical applications [12, 13]. 
In SVM-based regression, in order to estimate a function in the form of  equation (1) based on a limited set of  observations, 

the input space is mapped into a high dimensional feature space via the kernel function Φ (x) and then linear optimal 

regression is performed in this space. 

( ) ( )T

0y f x  w x w= = +  (1) 

The vector of  weights W and the bias W0 are estimated based on structural risk minimization principles [14], by solving 
the following optimization problem: 

( ) ξ ξ
N2 *

i ii 1

1
min R w w C .   

2 =

   = + +    
∑  (2) 

where C is the regularization factor, ε is the insensitivity parameter and εi and εi* are slack variables, calculated based on 

the Vapnik’s ε-insensitive loss function, as: 

( ) ( ){ }
ε

ξ ε  y f x max 0. y f x= − = − −  (3) 

Fig. 6 illustrates the concept of  ε -insensitivity in SVM-based regression. The optimization problem can be solved via 

quadratic programming optimization and the estimated function is expressed based on the optimal values as: 

( ) ( ) ( )N

i i i 0i 1
f x y x ,w w K x.x  w

=
= = +∑  (4) 

where N is the number of  training samples and K(x, xi) is calculated as: 

( ) ( ) ( ) ( )φ φk i k iK x .x x . x    ,    k. i 1.  . N= = …  (5) 

The training samples associated with non-zero weights called the support vectors, determine the number of  necessary 
kernel functions for estimating a function. The Gaussian radial basis function (RBF) kernel is the most popular kernel 
function in SVM and other kernel methods, expressed as: 

( )
σ

2

i
i 2

x x
K x.x exp

2

 −  = −   
 (6) 

SVM makes non-probabilistic point predictions. Ideally, estimation of  a conditional distribution of  the outputs P(t|x) is 
desired in order to capture the uncertainty in prediction. Although posterior probability estimates have been coerced from 
SVMs via post-processing, they have been argued to be unreliable [15].  
Although relatively sparse, SVMs make liberal use of  kernel functions, the requisite number of  which grows steeply with 
the size of  the training set. The necessity to estimate the regularization parameter C causes a trade-off  between the error, 

margin, and the insensitivity parameter ε, as the margin of  tolerance in function estimation. Therefore, a cross-validation 

procedure is mainly required, which wastes both data and computation. The kernel function K (x, xi) must satisfy the 

mercer's condition. To this end, it must be the continuous symmetric kernel of  a positive integral operator. 
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Fig. 6. The ε -insensitivity in SVM-based regression 

4.2 Relevance Vector Machine  

To overcome the shortcomings of  support vector machines, Tipping has proposed a fully probabilistic framework termed 
relevance vector machine (RVM) [16]. RVM is a nonlinear pattern recognition model with a simple structure based on 
Bayesian Theory and Marginal Likelihood. In addition to improving the inadequacies of  SVM, RVM makes use of  a very 
fewer number of  kernel functions. Therefore, it has been used in a broad range of  applications from wind power grouping 
forecast to pneumatic actuator fault diagnosis [17, 18]. However, its application has not yet been investigated for modeling 

the FSW process. In RVM-based regression, in order to predict a function based on a set of  N input-target pairs{Xn, tn}, 
each target is modeled as a function of  the corresponding inputs with additive white Gaussian noise to accommodate 
measurement error on the target: 

( ) εi i it y x .w= +  (7) 

where εi is assumed to be mean-zero Gaussian with variance σ2 and similar to the SVM, y (x, w) is considered as a linear 

combination of  N kernel functions centered at the training samples inputs, in form of  equation (1). Therefore, with the 
assumption that we know y (xn), each target is independently distributed as Gaussian with the mean y (xn) and variance 

σ2, expressed as: 

( ) σ2

n n np(t x) N( t y x . )=  (8) 

Based on the assumption of  independence of  the targets, the likelihood function of  the whole samples can be written as: 

( )
( )

φ

πσ

σ

πσ

2

2

t  w

2
2

N
2 2

e
p t w.  

2

  − −       

=  (9) 

where 

( )T1 Nt t  t= …  (10) 
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( )T0 Nw w  w= …  (11) 

and φ is an N*(N+1) matrix, defined as: 

( ) ( ) ( )φ φ φ φ
T

1 2 N    x ,   x ,    ,   x = …   (12) 

In which the vector φ(xn) is calculated as: 

( ) ( ) ( ) ( )φ
T

n n 1 n 2 n Nx  1. K x . x . K x . x .  . K x . x     ,  N 1,   ,  N = … = …   (13) 

It is expected that the maximum likelihood estimation of  W and σ2 from (9) would lead to over-fitting [15]. Therefore, 

additional constraints must be imposed on the parameters. For this purpose, a prior zero-mean Gaussian probability 

distribution is assumed for the weights as follows: 

α α
N

1

i i

i 0

p(w )   N(w 0. )−

=

=∏  (14) 

where α is a vector of  N+1 hyper-parameters. The variance of  this Gaussian probability distribution, αi
-1 controls the 

deviation of  each weight from zero, and a very large value for αi means that the corresponding weight, Wi is estimated to 

be zero. Using Bayesian posterior inference, the posterior over w is computed as [19]: 

( )
( ) ( )

σ α
α σ π

α σ

T 1w µ     w µ2  N 1
2   2

2 2
2

p(t w. )  p(w )
p(w t. . )       2      e

p(t . ) 

−  − ∑ −  −  − −    = = ∑  (15) 

where ∑ and µ are calculated as: 

( )σ φ φ
1

2 T  A  
−−∑= +  (16) 

σ φ2 Tµ    t−= ∑  (17) 

where in A is a diagonal matrix formulated as: 

( )α α α0 1 NA diag ,   ,   ,  = …  (18) 

Integrating P (w|t, α, σ2) over the weights w, it can be concluded that 

α σ σ α2 2p(t . )   p(t w. ) p(w ) d w= ∫  (19) 

The integral above, which is a convolution of  Gaussians can be obtained as: 

( )α σ π

T 1t    t
 N 1

    22
2 2p(t . ) 2      e

−    −  − −    =
Ω

Ω  (20) 

In the above equation, Ω is a matrix defined as: 

σ φ φ2 1 T   I  A−= +Ω  (21) 

Learning process of  RVM can be described as a search for the parameters α and σ2 which maximize the marginal likelihood 

p (t|α, σ2) based on the training dataset. The optimal parameters cannot be obtained in closed form, and they are estimated 

using an iterative re-estimation procedure. Based on the approach of  MacKay [20], the following iterative relationship can 

be achieved for estimation of  the hyper-parameters αi by differentiating p (t|α, σ2) in equation (20) with respect to log (αi) 

and equating it to zero. 

α
α

μ

new i ii
i 2

i

1  − ∑
=  (22) 

where µi is the i-th element of  the vector µ in equation (17), and the i-th diagonal element of  the matrix ∑ in equation (16). 

For the noise variance σ2, the following update formula is obtained by setting the derivative of  the marginal likelihood 

with respect to log (αi) to zero: 

( )
( )
φμ

σ
α

2
new

2

N

i iii 0

t
 
N 1  

=

−
=

− − ∑∑
 (23) 
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The parameters αi and σ2 from equation (22), equation (23) are calculated iteratively, while simultaneously the posterior 

statistics ∑ and µ from equation (16), equation (17) are updated. This procedure is repeated until some suitable convergence 

criteria have been satisfied. In this procedure, many of  the hyper-parameters αi tend to infinity, which means that the 

probability distribution of  the corresponding weights, Wi is peaked at zero and they are estimated to be zero, thus pruning 

many of  the kernel functions used in equation (1), which leaves the model sparse. The training set, which associates with 

the remaining nonzero weights is called the relevance vector. 

After convergence of  the hyper-parameter estimation procedure and obtaining the maximizing values αMP and σ2MP, the 

predictions are made based on the posterior distribution over the weights conditioned on them. The predictive distribution 

for a new input sample x* is proved by [15] to have a Gaussian distribution, expressed as: 

σ* * * 2

*p(t t) N( t y .  )=  (24) 

where y* and σ2 are the predicted mean and variance values, calculated as: 

( )μ φ* T *y     x=  (25) 

( ) ( )σ σ φ φ
T

2 2 * *

* MP    x     x= + ∑  (26) 

( ) ( ) ( ) ( )φ
T

* * * *

1 2 Nx 1. K x . x ,  K x . x ,   ,  K x . x   ,  N 1,   ,  N = … = …    (27) 

4.3 Results 

   From the database of  weld mechanical properties shown in Table 1, 62 samples (about 86%) were used to train the 

models and the models' accuracy was evaluated based on the rest ten samples (about 14%), which are marked in bold. 

Before training and testing the models, all the input and output values were normalized between −1 and +1 based on Eq. 

(28). 

( )
( )

2*u MX MN
un

MX MN

− +
=

−
 (28) 

In this equation, µ is the input or output, µn is the corresponding normalized value and the maximum or minimum value 

of  the input and output among the whole dataset is indicated by MX and MN respectively. 
In progress, the svm-km toolbox [21] and the Sparse Bayes package for Matlab [30] used to train the SVM and RVM models, 

respectively. Based on trained models and the training and test input samples, the predicted training and test outputs were 

obtained and were scaled to their original range based on Eq. (29). 

n

MX MN MX MN
y y *

2
ˆ

2

   − +  = +       
 (29) 

wherein, the normalized and final predicted values of  the output are denoted by yn and y� respectively.  

Finally, the root means square error (RMSE) and the coefficient of  determination R2 statistical indices, defined as Eq. (30) 

and Eq. (31) were calculated to evaluate the models' precision. 
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In these equations, N is the number of  samples, ti and yi are the targets and the predicted outputs, respectively, and M is 

the mean value of  the targets, calculated as: 

N

ii 1
t

M
N

==∑  (32) 

The calculated value of  indices is listed in Table 2. For the purpose of  comparison, the ratio of  RMSE to maximum value 

of  the measured outputs ymax is also added to the table. The RVM and SVM kernel and model parameters are also listed 

in Table 3. As can be observed, in case of  the bead width, the RVM method benefits from higher testing accuracy, while 

in the case of  the bead height the SVM method is more accurate. Therefore, a hybrid combination of  the two approaches 

was selected by averaging the two outputs, which benefits from reasonable accuracy for both of  the outputs. 
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Table 4. Statistical indices for evaluation of  the RVM and SVM models 

Output Method RMSE RMSE/ymax R2 

 RVM 0.0962 0.0301 0.9832 
Tensile Test SVM 0.1094 0.0352 0.9701 

 Hybrid RVM-SVM 0.089 0.0307 0.9584 

 SVM 0.4577 0.061 0.7939 
Hardness RVM 0.4936 0.0369 0.8369 

 Hybrid RVM-SVM 0.5021 0.0412 0.8979 

Table 5. The RVM and SVM parameters 

Output Parameter R2 

 RVM kernel parameter 6.18 

Bead Width SVM kernel parameter 12.008 
 SVM regularization factor (C) 10000 

 SVM insensitivity parameter (ε) 5-10 

 RVM kernel parameter 5.97 

Bead Height SVM kernel parameter 2 

 SVM regularization factor (C) 1 

 SVM insensitivity parameter (ε) 5-10 

 
Fig. 7. The predicted values of  bead width and the corresponding targets 

 

Fig. 8. The predicted values of  bead width and the corresponding targets 

5. Conclusion 

FSW process is a very efficient method for welding non-homogeneous metals. In this process, in order to build high-

quality products, it is very important to predict the mechanical properties based on the input welding process parameters. 

In this paper, a novel hybrid model based on the relevance vector machine and support vector machine regression analysis 

for modeling and prediction of  the weld mechanical properties in the Stir friction welding process was proposed. The input 
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parameters were considered of  Pin geometry, Rotational speed, Pin angle, and Forward speed. The RVM and SVM kernel 

and model parameters were calculated and a hybrid combination of  the two approaches was selected by averaging the two 

outputs. The coefficient of  determination (R2) was obtained as 0.9584 and 0.8979 for the Tensile Test and Hardness 

respectively in the case of  the test dataset, which indicates the model accuracy for both of  the outputs. Based on the hybrid 

SVM-RVM models, the input parameters can be tuned to obtain desired mechanical properties in this welding process 

precisely. 
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