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Abstract. In 2008, a technique was proposed to reduce run-times in analysis of semi-discretized equation of motion against 
dynamic excitations available in digitized format. Later, the technique was successfully adapted to reduce numbers of degrees of 
freedom in finite element analysis of assemblies of beam-columns subjected to static digitized loads. In this paper, attention is 
paid to dynamic finite element analysis of assemblies of beam-columns. It is shown that, when the mass is available in digitized 
format, after small modifications in the original technique, the adaptation can simplify the analysis, regardless of the models' 
sizes, their linearity or non-linearity, and whether the damping is classical or non-classical. The reductions in run-time and in-
core memory are considerable, while the changes in accuracy can be negligible. 

Keywords: Reduction in space, Dynamic finite element analysis, Beam-columns, Accuracy, Computational effort. 

1. Introduction 

By invention of computers in the mid-twentieth century, approximate numerical computations became popular in different 

areas of science and engineering. The major necessity of numerical computations, leading to the results desired accuracy, is the 

errors convergence to zero [1, 2]. Numerical stability and computational effort are other important concerns, e.g. see [3, 4]; and in 

practical computations, the main interests are sufficient accuracy and less computational effort, e.g. see [5]. 

Step-by-step solution of ordinary initial value problems is a broadly accepted computation that covers many approximate 

computational methods [6, 7]. For these methods, an important application area is analysis of initial value problems implying 

structures' semi-discretized equations of motion [3, 8, 9], typically stated as: 
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In eq. (1), M is the mass matrix, u is the vector of unknown displacements, each top dot represents once differentiation with 

respect to time, fint is the vector of unknown internal forces, f(t) is the vector of external forces, ≤Q O  indicates restrictions 

because of nonlinearity (e.g. the inequalities defining simple impacts between masses of multi-body systems, or poundings 

between adjacent buildings [10]), t and tend stand for time and the analysis duration respectively, and “0” as a right subscript 

denotes that the argument is at its initial status. Step-by-step solution of eq. (1), addressed as direct time integration or time 

history analysis in structural dynamics [3, 9], is pictorially summarized in Fig. 1. In analysis of eq. (1) by direct time integration, 

when f(t) has a digitized format, an appropriate integration step depends on the step in which f(t) is digitized; see [3, 11]. 
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Fig. 1. A pictorial description of step-by-step analysis of eq. (1) [3] 

Besides, based on Taylor series expansion [12], for a function F smooth [12, 13] with respect to a continuously changing 
independent variable ξ,  
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where, ξ is the independent variable and   stands for an arbitrary small change in ξ. Accordingly, 
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and the expression  
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converges to F (ξ) with second order of accuracy, when  i=1,2,…, nb converges to zero. In eq. (4),  i=1,2,…, nb represents arbitrary small 
changes in ξ, and a and b i=1,2,…, nb satisfy 
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Meanwhile, in step-by-step solution of eq. (1), if the integration scheme is single-solution [4, 14], and the excitation f is inexact, 
the second order convergence of f to its exact value will not impair the second order convergence of the response [15, 16]. Finally, 
natural phenomena, e.g. ground motions, are generally smooth with respect to time, and available in digitized format; see [17]. 
Considering these, in 2008, a technique was proposed, for faster analysis of semi-discretized equations of motion against digitized 
excitations [15]. The technique replaces the excitation f with an excitation digitized in larger step, such that separate analyses 
against the two excitations, using the two digitization steps as the integration steps, lead to close responses. The effort essential 
for the replacement is negligible. Accordingly, implementation of the technique results in less computational effort in the price of 
negligible change in the response accuracy. Later, the technique, which was originally proposed for enlargement of digitization 
step by integer scales [15], was extended to enlargements by real scales [18]; formulations of both techniques are summarized in 
the appendix.  

For adequacy of the technique's performance from the standpoint of accuracy [3, 15, 18], the digitization step should be 
smaller than needed for the response accuracy. In view of the existing literature (e.g. see [3, 11]), this implies: 
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In eq. (6), f t∆ %  is the digitization step of the new excitation (the digitization step of the original excitation is denoted by f t∆ ), T  is 

the smallest worthwhile period of the response [3, 19] or an approximation of this period [11], crt∆  implies the largest integration 

step providing numerically stable responses [4], rt∆  stands for the largest step we accept as the response digitization step [3], and 

specific for each analysis (linear/nonlinear without impact/nonlinear with impact) [3, 11], 

                                     

when the behavior is linear

when the behavior is nonlinear but not involved in impact

when the nonlinear behavior is involved in impac
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Though ambiguities exist in the notion and availability of T  and χ  prior to the analysis, the technique’s performance in the past 

experiences was successful; see Table 1.  
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Table 1. Samples of tests carried out to study the technique [15, 18] when implemented in transient analysis of semi-discretized systems against 
digitized excitations 

System 
Effort reduced, without worth-while 

reduction in accuracy (%) 
Details 

A thirty storey building 50 Two excitations are taken into account 

Bridges 30-80 
About 20 bridges with linear and nonlinear behaviors, some with pre-

stressed elements and some subjected to multi-support excitation, 
against different excitations 

Power station, Cooling 
tower, Space frame, Silo 

>50 
One or two of each special structure, considering linear and nonlinear 

behavior and different near-field and far-filed excitations and 
different integration schemes 

Milad tele-communication 
tower 

50-70 
Considering linear and nonlinear behavior and different near-field and 

far-field excitations and different integration schemes 

Table 2. Tests carried out to study the technique [15, 18] when implemented in finite element analysis of beam-columns assemblies against static 
loadings available in digitized format 

 

Reductions in computational effort because of the technique can be considerable (see Table 1 and [3]). Implementation of the 
technique is computationally cheap and easy, and the technique can be plugged in the pre-processing stage of arbitrary analysis 
software [3]. Additionally, as observed twice, the negligible change of accuracy does not necessarily imply loss of accuracy [3]. 
Considering these, extension/adaptation of the technique’s application to other areas started in 2017 [20]. In static analysis of 
finite element models of assemblies of beam-columns, when a part of the static load is distributed and available in digitized 
format, the technique [15, 18] can be simply implemented. The result is reduction of the analysis run-time (the case in the original 
application [15, 18]), as well as the in-core memory [20, 21]. In more detail, in the first application of the technique [15, 18], i.e. 
transient analysis of semi-discretized models against digitized excitations, reduction in computational effort is because of 
enlargement of integration step (reduction in time) and the run-time is being affected. In the second application, the reduction in 
computational effort is because of reduction in the number of degrees of freedom (reduction in space), and both the run-time and 
the in-core memory are being affected. The expression "reduction in space" is used above and in the title of this paper to indicate 
the distinction between enhancement in analysis efficiency due to enlargement of digitization step along a spatial axis (and the 
resulting decrease in the number of degrees of freedom) and enhancement in analysis efficiency due to enlargement of 
digitization step along the time axis (and the resulting larger time integration step). In this paper, while the former is addressed 
as "reduction in space", the latter, not under consideration here, is addressed as "reduction in time". (For an arbitrary dynamic 
finite element model, "reduction in space" implies reduction of the structure's number of degrees of freedom, while no 
simplification is applied along the time axis). There are two more differences between the two applications.  

First, while the integration interval may be slightly elongated in the original application (transient analysis of semi-discretized 
models) (see the appendix), the records lengths and the geometry need to be kept unchanged in implementation in static analysis 
of beam-columns' assemblies [21]. This difference can be simply eliminated by using slightly smaller beam-columns elements. 
The second difference is that in implementation of the technique [20, 21] in static analysis of beam-column assemblies' the 
digitized records shall express the load intensity, not the load values. This is while, in the original application, the records express 
the excitation values [15] (the reason mainly originates in considerations of the static load record in finite elements and the 
excitation record in time integration). This difference can also be simply eliminated, prior to the technique's implementation [21]. 
Considering these, several examples were studied for the second application [20, 21]; see Table 2. 

 

Regarding efficient finite element analysis, several approaches are addressed in the literature; model reduction, adaptive 
mesh generation, and parallel processing, are among the notable approaches; see [5, 22-25]. Concentrating on model reduction in 
dynamic finite element analysis, dynamic condensation, sub-structuring, and component mode synthesis, are of the popular 
techniques [26-28], in close relation with practical applications, such as structural dynamic modification [29, 30]. The 
achievements exemplified in Table 2 can be considered as examples of a conceptually new approach for model reduction (with no 
direct dependence to stiffness, damping, and mass matrices), which though is now limited to analysis of assemblies of beam-
columns (when the load is static and available in digitized format), the resulting reduction in computational effort is considerable 
(see [3, 5, 20-32]), and the change in accuracy is negligible. These plus ease and cheapness of implementation, simple applicability 
in different structural analysis software, almost identical formulation in the two applications [3, 15, 20, 21], and conceptually 
similar performance in linear and nonlinear problems (see Table 2), explain further study on the achievements reported in [3, 15, 
18, 20, 21]. Specially note that different from many model reduction methods with application in finite elements [5], the positive 
points addressed above, appear together in the second application of the technique [15, 18, 20, 21]. Considering these, the 
objective in this paper is to extend/adapt the recent application, i.e. static finite element analysis of assemblies of beam-columns 
[20, 21], to a third application, i.e. dynamic finite element analysis of a special class of beam-columns assemblies. In more detail, 
the objective is to study the application of the technique first proposed for accelerating time history analysis [15, 18], in dynamic 
finite element analysis of assemblies of beam-columns, when the mass is in a digitized format. The main attributes of the study 
are: 

(1) The behavior to be studied is the dynamic behavior,  
(2) The structures under consideration are assemblies of beam-columns, 
(3) The records (digitized in constant step) to be converted are the beam-columns' digitized masses. 

Seismic analysis of underground lengthy structures, e.g. tunnels, is a practical application; see [21, 33]. After this introduction, the 
adaptation of the technique [15, 18] is explained, including the key idea, the computational procedure, and some discussions on 
the good accuracy. Three examples are presented later, and after brief discussion on the practical significance and future 
perspective, the paper is concluded with a set of the most important achievements. 

Example 
Effort reduced without worthwhile 

reduction in accuracy (%) 

A cantilever beam 96 

Beam-columns with loading non-perpendicular to the member axis in 
linear / nonlinear analysis 

95 / 96 

Curved beam-column in linear / nonlinear analysis 98 / 98 

Realistic example (load changing with low / high frequency) 98 / 82 
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2. Theory 

2.1 Key idea 

Consider a semi-discretized model of a beam-columns' assembly, such that the mass is totally or partially available in 
digitized format and a dynamic load is applied to the assembly. For dynamic finite element analysis of such models, the sizes of 
beam-column elements are generally being set with attention to the mass digitization step. Accordingly, the number of the 
elements and the analysis computational effort can be excessive. A key idea to reduce this computational effort by using the 
technique proposed in [15, 18] is stated in this section. 

The key idea is very simple. It is using the formulation presented in the appendix [15, 18] (with few modifications), to replace 
the digitized mass with a mass digitized in larger steps, and applying ordinary dynamic finite element analysis. This implies no 
specific new formulation for adaptation of the technique proposed in [15, 18] to dynamic finite element analysis of the assemblies 
of beam-columns. A similar situation was observed when adapting the technique [15, 18] to the static finite element analysis [20, 
21]. (The almost identical formulation can indeed be considered as an advantage of the original technique [15, 18] entailing its 
easy adaptation to different applications.) 

To better explain the key idea, consider the details of the original technique [15, 18] and the explanations presented for its 
adaptation to static finite element analysis of beam-column assemblies subjected to static digitized loads [20, 21] (also see the 
appendix and Section 1). Specially note that the backbone of the step-enlargement technique [3, 15, 18] is responses convergence 
to the exact responses, which is a necessity for typical approximate computation [1, 3, 34]. Besides, take into account that, in both 
transient analysis of semi-discretized equations of motion, and static finite element analysis of the beam-column assemblies, the 
technique can be implemented prior to the analysis. Despite the similarities, in static finite element analysis of the beam-column 
assemblies, some additional considerations were needed, to address differences between step-by-step analysis of initial value 
problems and finite element analysis of boundary value problems [4, 6, 14]. The resulting adaptation [21] was successful (see  
Table 2). Accordingly, in dynamic finite element analysis of beam-columns' assemblies when the masses are available in digitized 
format, an approach close to that stated in [20, 21] is plausible. Based on the convergence necessity in finite element analysis, the 
good accuracy can be anticipated, as well. The main modification originates in that whether the mass model is lumped or 
distributed. Modifications are to be set in order to directly implement the adaptation proposed in [20, 21] in analysis of dynamic 
finite elements models of the beam-columns' assemblies. The modifications and a computational procedure are presented next, 
explanations on sufficiency of the response accuracy are stated later, and the performance is studied in Section 3.  

2.2 Formulation modification and computational procedure 

The main formulation of the adaptation proposed in this paper is identical to that of the original technique [15, 18]; see the 
appendix. The small differences are explained in continuation. When the mass is lumped, the amount of the mass between each 
two sequential lumped masses addressed by the digitized record is zero (independent of the type of the finite elements used). 
This is different from the past applications [15, 18, 20, 21], where the dynamic excitation between the excitation stations is not 
zero, or the static load is continuous along the beam-columns longitudinal axes. Therefore, when the lumped mass record is 
being replaced (according to the formulation presented in the appendix) with a record digitized in larger steps, the total mass 
decreases drastically. The resulting response of the structural analysis can be completely erroneous. To overcome this problem, 
the formulations and discussions presented in the appendix and [15] are reviewed in detail. The consequence is the essentiality to 
multiply the record produced by the technique [15, 18] by the enlargement ratio below: 
 

f

f

x
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x
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( f x∆  and f x∆ %  correspond to f t∆  and f t∆ % , however in the space domain, i.e. while f t∆  and f t∆ %  are used in the application of the 

technique to transient analysis, f x∆  and f x∆ %  are the corresponding variables in application of the technique to finite element 

discretization; see also [20, 21]). The above modification can be explained with attention to the considerations taken into account 
in the formulation presented in the appendix. Specifically, the formulation is set considering that in the structural analysis the f 
can be nonzero (even though unknown) at temporal/spatial locations different from the digitization stations. This is not the case 
for lumped mass models. Accordingly, to use the formulation presented in the appendix for an f representing lumped mass, it is 

reasonable to consider each data of the record distributed uniformly throughout f x∆ . This implies replacement of / f x∆f  instead 

of f in the formulation in the appendix. Similarly, the consequence of the formulation presented in the appendix, ,f%  though is 

computed for specific spatial locations, is not necessarily zero elsewhere; see the past two applications [15, 18, 20, 21]. The case is 

different for dynamic finite element analysis considering lumped masses. Accordingly, it is reasonable to replace the f%  with f x∆f% % , 

as well. In view of Eq. (8) and the linearity of the formulations presented in the appendix, the above-mentioned two replacements 

imply n times larger ,f%  when f stands for lumped mass, i.e. 

       (when the mass is lumped)n=M M
%% %  (9) 

In Eq. (9), M%  stands for the lumped mass to be used in the new (reduced) analysis, and M
%%

 is the lumped mass (in digitized format) 
computed by applying the formulation presented in the appendix to the original mass M. Additional error is induced to the 
computation by the above-mentioned division by the digitization step. However, the approximation is reasonable and at least of 
the order of the approximation induced by the technique [15, 18] and hence is negligible. 

When the mass is originally distributed and the record f represents the intensity of the mass (also in consistence with the 
study reported on static analysis of beam-columns assemblies [20, 21]): 

 
      (when the mass is originally distributed and expressed as mass intensity)=M M

%% %  (10) 

The case of distributed mass expressed as values of mass at digitization stations is very rare. Finally, it is worth noting that, in 
structural analysis practice, lumped mass models are more popular than distributed mass models, e.g. see [35].  

For implementation of the technique [15, 18] in dynamic finite element analysis, another point, originating in the type of the 
problem, i.e. boundary value problem versus initial value problem, should be taken into account as well. It is to prevent changes 

in the beam-columns' lengths. In other words, the case end endx x′ ≠ , addressed in the appendix, would rather be prohibited, in 

order to eliminate additional nonlinearities due to changes in geometry. This can be materialized, by using slightly smaller 



Reduction in Space for Dynamic Finite Element Analysis of Assemblies of beam-columns  
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 71-83 

75 

elements, throughout beam-columns undergone change of length because of implementation of the technique. 
In view of the above explanations, a computational procedure to simplify analysis of the dynamic finite element models, is 

stated below: 
1. Using the existing experience or a preliminary simple analysis, select the integration step and beam-column element sizes, 

such that to accurately define the response, taking into account the digitization step of the mass record (i.e. not using 
elements larger than the mass digitization step for beam-columns with digitized mass). Note that analysis using these 
selections implies ordinary analysis. 

2. Repeat Step 1, while disregarding the restriction because of the mass digitization steps. 
3. For each beam-column, divide the element length obtained in Step 2 to that obtained in Step 1. 
4. Assign a positive value larger than one to n, taking into account the results computed in Step 3. (When the results are 

smaller than one, the reduction may be unsuccessful; generally, this is not the case.) 
5. Using the value assigned to n, enlarge the beam-column elements computed in Step 1, while replacing the mass, available in 

digitized format, with masses digitized in n times larger steps, by  
(a)  Using the formulation in the appendix and the value assigned to n in Step 4,  
(b)  Implementation of either eq. (9) or eq. (10) 
6. The lengths of the masses records obtained in Step 5 are either unchanged or slightly lengthier than the original records. In 

the latter case, the size of the elements on the beam-columns with mass should be decreased (by multiplying them in the 

record's end endx x ′  (for endx ′  see the appendix). (The amount of the decrease is small and need to be separately computed and 

applied for each beam-column with digitized mass.) 
7. Because of the enlargement addressed in Step 5, the lengths of the without-mass beam-columns may change. In such a case, 

for each beam-column, the lengths of the elements should decrease uniformly and the least, causing the change in the 
beam-column’s length to disappear. 

Regarding Steps 1 and 2, it is worth noting that efforts to simplify these two steps are ongoing; e.g. see [36]. Meanwhile, for 
nonlinear analyses, selection of nonlinearity parameters, e.g. nonlinearity tolerance, is essential, in Step 1. 

2.3 On the good performance 

Performance of a method proposed for enhancing the efficiency of structural analysis can be considered adequate, if it is 
applicable to a broad range of problems, its implementation is easy and cheap, the reduction in computational effort is 
considerable, and the loss of accuracy is negligible. In view of Section 2.2 and the appendix, the ease and low cost of 
implementation are obvious for the adaptation proposed in this paper. With regard to versatility, computational effort and 
responses' accuracy, the mainstay of the study is the examples presented in Section 3. Still, brief theoretical explanations are 
presented in continuation. 

For computational effort, when the analysis is linear, reduction in the computation effort is clear. By implementation of the 
proposed adaptation, sizes of the structural matrices/vectors reduce, without any change in the time integration step. This entails 
reduction in run-time and in-core memory (reduction in in-core memory is more). For nonlinear analyses, reduction in 
computational effort cannot be guaranteed, due to the probable effects of nonlinearity iterations [37]. However, because of the 
generally more influence of matrices/vectors sizes on the computational effort (compared to the nonlinearity iterations), the 
reduction is also likely when the analysis is nonlinear.  

For accuracy, consider dynamic finite element analysis of a beam-column assembly and the relation below (see [38]): 
 

( )1 21,2, , ,
P

a
i nU F P λ λ==

Κ
 (11) 

between an arbitrary response obtained from the analysis U 

a, real physical variables contributing the analysis 1,2, pi nP = Κ
, 1λ  as an 

indicator for sizes of the finite elements throughout the structural system, 2λ  as an indicator for sizes of the time steps 

throughout the integration interval, and F as a schematic representation of the computation. For the experiences reported in  
Table 1, the technique [15, 18] causes changes in 2λ  without changing 1λ . In this study, the technique causes changes in 1λ  without 

changing 2λ . In ordinary analysis, 1,2, pi nP = Κ
 undergoes no change and changes of 1λ  or 2λ  (not because of the technique [15, 18]) 

generally cause second order convergence in U 

a. That is implementation of either finite elements or time integration leads to 
second order accuracy for the responses of linear analyses [4, 14, 39, 40]. Accordingly, in ordinary linear dynamic finite element 
analyses, eq. (11) implies similar roles for 1λ  and 2λ , from the point of view of convergence. Implementation of the technique [15, 

18], either in its original application [3, 15, 18] or analysis of dynamic finite element models of beam-columns assemblies, causes 
errors in U 

a, additional to ordinary analysis. These errors are associated with the changes of 2λ  or 1λ  and the changes included in 

1,2, pi nP = Κ
. Since, based on the convergence back-bone of the technique [15, 16], these additional errors converge with the second 

order of accuracy, implementation of the technique and the above-mentioned additional errors cannot change the similarity of 
the roles of 1λ  and 2λ  in eq. (11). Therefore, with attention to the fact that in approximate computations accuracy is being studied 

under the umbrella of convergence [1, 34], and the original application of the technique proposed in [13, 18] leads to responses 
with sufficient accuracy (see Table 1), it is reasonable to expect good accuracy for the responses in the second application. That is 
when 1,2, pi nP = Κ

 and 1λ  change, according to the details of the technique [15, 18], and the modifications addressed in Sections 2.1 

and 2.2 (and 2λ  does not change), the computed responses can be sufficiently accurate. For nonlinear analyses, the second order 

convergence need to be preserved; see [41].  

3. Illustrative examples 

3.1 Introduction 

To show the good performance of the proposed adaptation, the study of three examples is reviewed in this section. Since, the 
examples were the first to study reduction in space of dynamic finite element analysis by the technique proposed in [15, 18], there 
was no concern on the largest value acceptable for n. It sufficed to show that computational effort can be reduced without 
worthwhile change in the response accuracy. The application area was structural analysis against ground motions applied 
uniformly to all supports of the structure [42]. The OpenSees (Open System for Earthquake Engineering Simulation) software [35] 
was used for the analysis, and the S.I. system was set for the units. 
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3.2 Simple example consisting of a beam a column and a beam-column 

Consider the structural system introduced in Fig. 2(a) and Table 3. The only mass is the lumped mass of Member BC; see Fig. 
2(b). The dynamic excitation is addressed in Fig. 2(c). Linear two-node beam-column elements were used for discretization in 
space [35, 39, 40], and the average acceleration method [43] (with steps equal to the excitation steps, i.e. 0.02 seconds) was used for 

time integration. The analysis was first carried out, using elements with lengths equal to 0.01 m, 0.01 2 m, and 0.01 m, for 
members AB, BC, and CD respectively, and then repeated, using eight times larger elements, according to the procedure 
introduced in Section 2.2; for the responses, see Fig. 3. The run-time decreased from 272 seconds to 17.1 seconds, and the number 
of degrees of freedom decreased from 5399 to 674, all together implying more than 1000-fold increase in efficiency (see [44]), in 
the price of negligible change in accuracy.  

 

(a) 

  

(b) (c) 

Fig. 2. Structural system in the first example: (a) structural model, (b) mass, (c) ground motion 
 

 
 
 
 
 

 

 

Fig. 3. Typical responses computed for the structural system in the first example 
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Table 3. Complementary information about the structural model in the first example 

Member Profile 
Cross sectional Area  

(m2) 
Moment of  
Inertia (m4) 

Modulus of Elasticity 
(N/m2) 

Damping 

AB 
IPE 330 0.00626 0.0001177 2.1E11 

Rayleigh damping considering 5% 
viscous damping ratio for the 1st 

and 3rd natural modes 
BC 
CD 

 
 
 

The study was repeated after replacing the lumped mass with a distributed mass. The results, not reported here for the sake of 
brevity, were conceptually identical to those for the lumped mass, with regard to both accuracy and efficiency. 

3.3 Example of a building structure 

Figure 4(a) and Table 4 introduce the building structural system under consideration in this example. The system’s main mass 
is consisted of 9000 Kg lumped masses at the beam-column joints (totally equal to 4.68×105 Kg). Besides, lumped masses in a 
digitized format are considered at a first floor’s corner beam, as displayed in Figs. 4(a) and 4(b) (totally, about 3×105 Kg). The 
dynamic excitation is the two-component ground acceleration addressed in Fig. 4(c). The system was first analyzed, using linear 
two-node beam-column elements [35] (see Table 5) and direct time integration with the HHT ( = -0.2) method [45] and steps 
equal to the dynamic excitation's digitization-step (i.e. 0.01 sec). The nonlinearity (P - Δ) was modeled, considering modified 
Newton-Raphson iterations and a tolerance equal to 10-6 [37, 44]. To study the performance of the adapted technique, the analysis 
was then repeated thrice, after considering n = 2, 2.4, 2.5 in implementation of the technique; the element lengths are addressed 
in Table 5. The resulting responses are typically reported in Fig. 5; and the reductions in run-time and number of degrees of 
freedom are reported in Table 6. Obviously, the performance is satisfactory. Specifically, for all three values of n, implementation of 
the proposed adaptation reduced the computational effort (the reductions were in run-time, and in-core memory, and led to more 
than 16 fold increase in efficiency), while the response accuracy changed negligibly. It is also worth noting that, when n = 2.4, 
Steps 6 and 7 of the procedure in Section 2.2 were applied; see Table 5. Both from a model reduction point of view, and also when 
considering the practical aspects, the observations in this example are notable, because of the nonlinearity of the behavior, and 
the structure’s shape topology and building usage; see [46, 47]. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4. Structural system in the second example: (a) structural model, (b) mass, (c) ground motion 
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Table 4. Complementary information about the structural model in the second example 

Member Material 
Length  

(m) 
Cross section 
(mm×mm) 

Modulus of 
Elasticity (N/m2) 

Damping 

Columns in the 1st floor 

Reinforced Concrete 

4.8 Square (450×450) 

2.0E10 

Rayleigh damping 
considering 5% viscous 
damping ratio for the 1st  
and 5th natural modes 

Columns in the 2nd,  
3rd, and 4th floors 

3.3 Square (400×400) 

Beams 4.2 Rectangular (250×350) 

Table 5. Lengths of beam-column elements in the finite element model in the second example (m) 

n 
Beam with mass (m) 

(see Fig. 4(a)) 
Beams without mass (m) 

(see Fig. 4(a)) 
Columns of the 1st floor (m) 

Columns of the 2nd, 3rd, and 4th 
floors (m) 

1.0 (no reduction) 0.015 0.42 0.48 0.33 
2.0 0.030 0.84 0.96 0.66 
2.4 0.035897435897 0.84 0.96 0.66 
2.5 0.0375 1.05 1.20 0.825 

Table 6. Run-times and numbers of degrees of freedom in implementation of the proposed adaptation in the second example 

n Run-time (sec) Number of degrees of freedom 
1.0 (no reduction) 2992 8844 

2.0 1438 4194 
2.4 1422 4056 
2.5 1375 3264 

 

 

 

(a) (b) 

Fig. 5. Typical responses computed for the structural system in the second example: (a) Original model, (b) Reduced models 
 

3.4 Elaborate example 

The purpose of this example is to study the performance of the proposed adaptation when implemented in analysis of structures 
with considerable number of degrees of freedom, non-proportional damping, spread nonlinearity, and realistic mass. Figure 6 and 
Table 7 introduce the structural system. The mass of the system is consisted of the lumped masses of members AB, BC, and CD, 
available in digitized format, as addressed in Fig. 6(b) (the profile of the digitized mass was taken from the longitudinal profile of 
the Brenner Base tunnel, a part of the future TEN No. 5 corridor Helsinki-Valletta [33]). The ground acceleration is as addressed in 
Fig. 6(c). And, as implied in Fig. 6 and Table 7, the beam-columns behavior is linear-elastic/perfectly-plastic, and the system is non-
classically damped [42] (because of the one linear viscous damper in the system); for the importance of these characteristics, see 
[29, 46, 47].  

In analysis of the original model (no reduction), two-node nonlinear beam-column elements [35], sized one centimeter, were 
used for finite element discretization in space (see Table 8). The resulting semi-discretized equation of motion was analyzed in 
time, using Bathe's time integration method [48], with steps equal to the earthquake record's digitization step, i.e. 0.02 sec, and 
the Newton Raphson method for nonlinearity iterations [37, 44] with a tolerance over displacements equal to 10-4. The results are 
typically reported in Fig. 7(a). The proposed adaptation was then implemented twice, using n = 5 and n = 18, for changing the mass 
record, according to the procedure stated in Section 2.2. It is notable that when n = 18, Steps 6 and 7 of the procedure were to be 
applied, and the consequence was different elements' sizes throughout the structure (see Table 8). The resulting responses are 
reported in Figs. 7(b) and Fig. 7(c), and the computational effort is reviewed in Table 9 (specifically, the decrease in computational 
effort is more than 8300 fold when n = 18; see [44]). These, plus the fact that the mass was totally digitized and associated with a 
large part of the structure, evidence the possibility of good performance of the proposed adaptation, for problems with 
moderately large number of degrees of freedom, spread nonlinearity, and non-classical damping. 

Towards another evidence for the good performance, the study was repeated after replacing the damping (see Fig. 6(a)), with 
2% proportional damping, considering the first and third natural modes. The results were conceptually identical to those 
presented in Fig. 7 and Table 9, not reported here for the sake of brevity. 
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(a) 

 

(b) (c) 

Fig. 6. Structural system in the third example: (a) structural model, (b) mass, (c) ground motion 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Typical responses computed for the structural system in the third example: (a) Original model (n = 1), (b) Reduced model (n = 5), (c) Reduced 
model (n = 18). 
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Table 7. Complementary information about the structural model in the third example  

Beam-column Profile 
Modulus of 

Elasticity (GPa) 
Yield strength 

(GPa) 
Moment of 

Inertia (cm4)  
Area 
(cm2) 

Polar  Moment 
of Inertia (cm4) 

AB, BC, CD,  
BF, EB 

IPB 500 210 0.23536 1.072×105 239 1.198×105 

BG Box 400*400*40 210 0.23536 1.259×105 576 2.519×105 

Table 8. Lengths of beam-column elements in the finite element model in the third example (m) 

n Member AB Member BC Member CD Member EB Member BF Member GB 
1.0 (no reduction) 0.01 0.01 0.01 0.01 0.01 0.01 

5.0 0.05 0.05 0.05 0.05 0.05 0.05 
18.0 0.179641 0.18 0.178571 0.18 0.18 0.179104 

Table 9. Run-times and numbers of degrees of freedom in implementation of the proposed adaptation in the third example 

 

 

Table 10. Natural periods of the structural models in Section 3 (in seconds)   

 Example 1 Example 2 Example 3 
n Natural mode number n Natural mode number n Natural mode number 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1* 3.62 0.97 0.41 0.21 0.13 1* 0.93 0.87 0.81 0.72 0.68 1* 8.93 5.04 3.89 3.13 2.61 

8 3.63 0.98 0.42 0.21 0.14 

2 0.93 0.87 0.81 0.71 0.65 
5 8.93 5.04 3.88 3.13 2.61 

2.4 0.93 0.87 0.81 0.71 0.65 
18 8.94 5.04 3.89 3.14 2.62 

2.5 0.93 0.87 0.81 0.71 0.63 
* Modal analysis of the original model (no reduction) 

 

4. Discussion 

The main achievement of this paper is replacement of dynamic finite element models of a class of structures with models 
with less degrees of freedom, using a technique originally proposed in 2008 [3, 15, 18]. From a model reduction point of view, the 
adapted technique can be easily and cheaply implemented prior to structural analysis by arbitrary software. The resulting 
reduction in computational effort is considerable and the change of accuracy can be negligible. These are significant features of 
the proposed adapted technique, that explain further study towards elimination of the main restriction of the technique, i.e. 
applicability only to analysis of assemblies of beam-columns with masses available in digitized format.  

Regarding the accuracy, it is worth noting that, as displayed in Section 3, the proposed adapted technique preserves the 
accuracy of the response time history, the modal characteristics can be preserved, as well; see Table 10.   
 

In view of the explanations above the proposed adaptation is significant, in practice, and academia, though still limited to a 
special class of structures. Regarding academic researches, consider that there are many researches in the field of earthquake 
engineering, based on time history analysis, e.g. IDA (Incremental Dynamic Analysis); see [49-51]. These studies, which are mostly 
concentrated on structures consisted of beam-columns, are inherently time-consuming. In such studies, when the mass is 
available totally or partially in digitized format, e.g. fragility analysis of lengthy underground structures, the adaptation proposed 
in this paper can considerably accelerate the study. Furthermore, with attention to the simple formulation of the adapted 
technique, and that the proposed adaptation affects only the lumped mass, efficiently teaming of the proposed adaptation with 
many model reduction and model modification methods (e.g. [29, 30, 52, 53]), as well as adaptive mesh generators (e.g. [24]), and 
methods accelerating time integration (e.g. [15]), sounds plausible. More efficient model reduction and structural analysis, and 
more efficient study of the sensitivities (to the model's parameters), can be the practical consequences. Further detailed 
investigation is essential.  

Despite the above-mentioned positive points, some ambiguities need to be clarified. One is the expression "dynamic analysis" 
in the title of the paper. Time integration is the most powerful broadly accepted tool for transient analysis [42, 54]. Nevertheless, 
for linear dynamic analyses, modal superposition [9, 42] is a competitive alternative. Replacement of the digitized mass as 
explained in Section 2 [15, 18, 20, 21] can enhance the efficiency of modal superposition analysis. The natural periods' good 
accuracy in Table 10, together with the details of modal superposition [42], and the good accuracies reported in Section 3, entail 
the possibility of responses’ good accuracy when modal superposition is used for analysis in time. These imply that, as stated in 
the title, the proposed adaptation can simplify the dynamic analyses, when the analysis in time is by time integration or modal 
superposition. Surely, further investigation is essential. 

Another ambiguity, that shadows practical implementation of the proposed adapted technique, as well as the predecessor 
techniques [15, 18, 20, 21], is assignment of appropriate values to n; see Steps 1-4 of the procedure in Section 2.2. Despite the 
efforts carried out in the past years (e.g. [36]), no established achievement is reported yet.  

Finally, disagreement between the notion of lumped mass and the assumption of continuity for the function available in 
digitized format to be digitized in larger steps; see the appendix [3, 15], is a potential question. Returning to the theoretical details 
of the technique proposed in 2008 [15], it is sufficient that the digitized data can be represented by a function continuous in the 
analysis time interval (see [38]). The digitized lumped mass is a discontinuous function that since can be expressed as a 
summation of Kronecker-delta functions [12, 13], can be with desired accuracy extended to a continuous or even smooth function 
[38]. Accordingly, the technique [15, 18] can be implemented to replace the lumped mass with a mass digitized in larger steps. The 
examples in Section 3 were set with lumped masses (rather than distributed masses), specifically in order to display the validity 
of this claim. 
In implementation of the proposed adapted technique, some restrictions exist. The inherent restriction is the type of the 
structural system, i.e. assemblies of beam–columns. Besides,  

1. The mass or a part of the mass shall be available in digitized format (with constant digitization step). 
2. The mass shall be represent able as a function continuous with respect to the beam–column's longitudinal axis. 

Restriction 1 can be considered satisfied, when the mass is obtained from computation on some digitized information (e.g. 
soil mass associated with underground tunnels and pipes, depending on the soil properties and depth). In such situations, the 
instrumentations used for recording the information, e.g. properties of soil and depth, mostly present results in digitized format 

n Run-time (sec) Number of degrees of freedom 
1.0 (no reduction) 8190.66 (more than 2 hours) 70186 

5.0 1790.38 (about 30 minutes) 14026 
18.0 320.512 (about 5.5 minutes) 3892 
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[17]. Otherwise, when the mass is not digitized, the restriction can be eliminated by replacing the analytical mass with a digitized 
representation of a lumped or distributed mass (for adequate accuracy, the digitization step need to be sufficiently small). With 
regard to Restriction 2, continuity of the mass can generally be accepted, considering that the source of the data is mostly natural 
phenomena, e.g. ground elevation. The only case this restriction cannot be satisfied is when the mass is distributed and at 
specific points changes abruptly. This is not only very rare, but also can be eliminated, by using special mathematical functions 
and accepting the negligible inaccuracy, e.g. see [55]. 

In view of the achievements, ambiguities, and restrictions above, the research reported in this paper can be continued in the 
following directions: 
1. Testing the achievements in analysis of beam-columns' assemblies with more complicated behavior. 
2. Elimination of the restriction on applicability (i.e. the assemblies of beam-columns)  
3. Extension of the study to other methods of discretization, e.g. finite difference. 
4. Extension of the study to combination of the technique's three successful applications [15, 18, 20, 21], e.g. simultaneous 

reduction in space and time for assemblies of beam-columns (the first steps are taken; see [56]). 
5. Teaming of the proposed adaptation with other methods dedicated to efficient analysis and model modification.  
6. Using the achievements to accelerate time-consuming computations, such as IDA and fragility analysis [49-51]. 
7. Developing a process for assigning an appropriate value to n. 
8. Improvement towards more reduction of the computational effort and more response accuracy.  

5. Conclusions 

By slight modification in the technique proposed in [15, 18], reduction in space, or in other words replacing finite element 
models with models with less degrees of freedom, is possible in dynamic finite element analysis, when  

1. The models represent beam-columns' assemblies with lumped or distributed masses available in digitized format. 
2. The digitized masses can be considered smooth with respect to the beam-columns longitudinal axes. 

Dynamic analysis of the reduced models can be considerably more efficient than analysis of the original models (more than 8300 
fold in the third example), and the change in accuracy can be negligible (see Figs. 3, 5, and 7). Additionally,  

1. Implementation of the adapted technique is simple and computationally cheap. 
2. The proposed adaptation can be plugged in the preprocessing stage of arbitrary structural analysis software. 
3. The good performance of the adapted technique can be anticipated in analysis of simple and complicated linear or nonlinear 

beam-columns assemblies, damped classically or non-classically, regardless of the method used for integration in time.  
Future perspective of the presented study is also briefly addressed. 
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Appendix 

The purpose of this appendix is to review and summarize the main formulation proposed in [15, 18]. Given data digitized in 

constant steps, the formulation presented in [15, 18] can reduce the data (the number of the data), by enlarging the digitization 

step, using an enlargement ratio larger than one. The presentation below, first considers integer enlargement ratios [15], and then 

extends the formulation to real enlargement ratios [18]. 

Consider the positive integer number n (including one) as the enlargement ratio, f as the vector of the digitized data, and f x∆  

as the digitization step, where x implies the independent continuously changing variable defining the digitization. Note that the x 

in the appendix is different from the x in the main body of the paper. For an n-fold reduction of the data, the digitization step f x∆  

changes to f x∆ %  as (unless stated the n in eq. (A1) is an integer): 
 

f fx n x∆ ∆=%  (A1) 
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and the new vector f%  is defined as 
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∆ ∆ ∆

∆

+

+

 − = = ∈′ ′= = −
 − = + ∈ ′− = −

Κ  (A3) 

endx ′  is the smallest value not smaller than endx  that is also an integer multiplier of fn x∆ , and ( )ixg  is defined as 

 ( ) when 0
( )

0  when
endi i

i

end endi

x x x
x

x x x

 ≤ ≤= 
 ′< <

f
g  (A4) 

Equations (A1-A4) clearly define the computation of f% , in terms of f  and n, when n is a positive integer. The remainder of this 
appendix is dedicated to the extension of the enlargement ratios to positive real numbers n, i.e. 

 1,     (  is the set of positive real numbers)n r r R R+ += > ∈  (A5) 

From simple calculus [12], for an arbitrary positive real number n larger than one, there always exist two sequential integer 
numbers, 1n  and 2n , such that: 

 
1 2

2 1

1 2

1

,

n n n

n n

n n Z +

< ≤

= +

∈

 (A6) 

By considering the computation addressed in eqs. (A1-A4) for the two integers 1n  and 2,n we will obtain 1f%  and 2f%  corresponding to 

1n  and 2n , respectively. The associated digitization steps are respectively equal to: 

 
1 1

2 2

f f

f f

x n x

x n x

∆ ∆

∆ ∆

=

=

%

%
 (A7) 

Concentrating on 1f% , by using linear interpolation, the digitization step of 1f%  can be changed to f x∆ % , where f x∆ %  is obtainable from 

eq. (A1) considering non-integer values for n. The last computation can be repeated for 2f% . Accordingly, 1f%  and 2f%  are now both 

digitized data, with the digitization steps similarly equal to f x∆ % . In this stage, the two digitized data, i.e. 1f%  and 2,f%  though 

correspond to different enlargement ratios, i.e. 1n  and 2n , are both digitized in steps f x∆ % . Point-by-point linear interpolation 

between the members of the two data, as 

 ( ) ( )2 1 1 2n n n n= − + −f f f% % %  (A8) 

entails the reduced data corresponding to n [18], when n is a real number larger than one. As a validity check, when n approaches 

1n  or 2,n  f%  approaches 1f%  or 2,f%  respectively. 
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