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Abstract. In this paper, the problem of  Poiseuille flow with couple stresses effect in a fluid layer using the 
linear instability and nonlinear stability theories is analyzed. Also, the nonlinear stability eigenvalue problems 
for x,z and y,z disturbances are derived. The Chebyshev collocation method is adopted to arrive at the 

eigenvalue equation, which is then solved numerically, where the equivalent of  the Orr-Sommerfeld 
eigenvalue problem is solved using the Chebyshev collocation method. The difficulties which arise in 
computing the spectrum of  the Orr-Sommerfeld equation are discussed. The critical Reynolds number Rc, the 

critical wave number ac, and the critical wave speed cc are computed for wide ranges of  the couple stresses 

coefficient M. It is found that the couple stresses coefficient M has great stabilizing effects on the fluid flow 

where the fluid flow becomes more unstable as M increases. 

Keywords: Poiseuille flow, Couple stresses, Orr-Sommerfeld, Linear instability, Nonlinear stability. 

1. Introduction 

 In this paper, we study the problem of  Poiseuille flow. It involves an incompressible fluid under isothermal conditions, 
inside an infinite channel, which associates with a constant pressure gradient. In a laminar way, the fluid flows along this 
pressure gradient, resulting in a parabolic velocity profile which is independent of  time. The actual difference from the 

previous work is that we add the effect of  the couple stresses effect. 
 One of  the main problems in fluid dynamics is the classical hydrodynamic problem of  stability for Poiseuille flow in a 
channel, see for example Joseph [1], chapter 3, Straughan [2], chapter 8. These authors have shown that there are 
substantial problems in trying to improve or develop the nonlinear stability theory because there is a significant 
difference between the linear instability and the nonlinear energy thresholds. In addition, the associated eigenvalue 
problems to this class of  flows are very difficult and need a very accurate numerical scheme, see for example [3, 4]. 

 However, this area still attracts much interest in the literature of  fluid dynamics. In [5], the nonlinear energy stability 
has been addressed. Poiseuille flows that time-dependent and time-periodic was analyzed in [6, 7]. The effect of  slip 
boundary conditions has been studied in [8, 9]. Moreover, the Poiseuille flow problem of  flow for a fluid overlying a 
porous medium has been introduced in [10, 11]. Also, the Poiseuille problem of  flow in a channel with one fluid 
overlying another was studied in [4]. These articles include many other relevant references. 

 Earlier in this work, the theoretical and experimental results on the onset of  thermal instability (Bénard convection) in a 
fluid layer under varying assumptions of  hydrodynamics, underwent a detailed review, conducted by Chandrasekhar [12]. 
Such investigations of  these kinds of  fluids are important, bearing in mind the increasing importance of  non-Newtonian 
fluids in technology and industries. Stokes [13] has put forward the theory of  couple-stress fluids. Couple-stresses are 
present in significant magnitude in fluids with very large molecules. Applications of  couple-stress fluids occur in 

connection with the study of  the mechanism of  synovial joint lubrication, currently being focussed upon by researchers. 
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A human joint is a dynamically loaded bearing with articular cartilage as the bearing, and synovial fluid as the lubricant. 
The normal synovial fluid is clear or yellowish and is a non-Newtonian, viscous fluid. Because of  the long chain of  

lauronic acid molecules found as additives in synovial fluid, Walicki and Walicka [14] modeled the fluid in question as 
couple-stress fluid in human joints. The issue of  a couple-stress fluid and porous medium has also been investigated in 
[15-17]. Recently, in Harfash and Meftenb [18], the problem of  convective movement of  a reacting solute in a viscous 
incompressible fluid occupying a plane layer and subjected to a couple stresses effects have been studied. The thresholds 
for linear instability are found and compared to those derived by a global nonlinear energy stability analysis. However 

Harfash and Meftenb, in [19], have extended their work where they have studied the problem of  double-diffusive 
convection in a reacting fluid with the effect of  couple stresses. In [19], the density is assumed to have quadratic 
dependence on the temperature and a linear dependence on the concentration and Linear instability and nonlinear 
stability analyses were performed. 
 In the present article, the problem of  Poiseuille flow of  an incompressible couple stress fluid between parallel plates is 
studied using no-slip boundary conditions. Here, we consider a modification to the work in [20] by inserting the effect of  

couple stresses effect on the problem of  Poiseuille flow in an infinite channel and discarding the effect of  the magnetic 
field and we believe this problem is analyzed for the first time in this article. In order to provide a clear analysis of  the 
problem of  Orr-Sommerfeld, we discuss in this paper the instability of  Poiseuille flow in the plane with the couple 
stresses effect. We then turn to the study of  non-linear stability analysis of  the problem. We also include our 
computational results for both cases. 

2. Basic Equations 

 We suppose the Poiseuille flow with couple stresses type and occupies the spatial domain 
2{( , ) } { ( / 2, / 2)} { > 0},x y z L L t∈ × ∈ − ×R (schematically shown in Figs. 1 and 2), then, the governing equations are 

[13]: 

2

0 , , ,

,

ˆ( ) = ,

= 0,

i t j i j i i i

i i

v v v p v v

v

ρ μ μΔ Δ+ − + −
 (1) 

where 0, , , ,iv p ρ μ  and μ̂  denote the velocity field, pressure, density, dynamic viscosity coefficient, and couple stress 

viscosity coefficient, see [18, 19]. The equations (1) are conveniently non-dimensionalized scalings with the variables: 

0 0 0
0 2

0

ˆ
= , = , = , = , = , = .

V V LL
L t t V p p M Re

V L L

μ ρμ

μμ

∗ ∗ ∗ ∗x x v v   

Now, from above non-dimensional, then the system (1) may be rewritten as: 

2

, , ,

,

( ) = ,

= 0,

i t j i j i i i

i i

Re v v v p v M v

v

Δ Δ+ − + −
 (2) 

where Re  is the Reynolds number and M  is a non-dimensional couple stress viscosity coefficient. The above 

Equations are holding now on 2{( , ) } { ( 1,1)} { > 0},x y z t∈ × ∈ − ×R  with the following no-slip boundary conditions, see 

[18, 19], 

= 0 = 0, and = 0, on = 1,1.yz zz xz zz iw v w u v z− − −  (3) 

  

 

Fig. 1. A schematic of  the physical domain. 
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0, 0 and 0 on 1yz zz xz zz iw v w u v z− = − = = =  

Fixed 

 
Fixed 

0, 0 and 0 on 1yz zz xz zz iw v w u v z− = − = = =−  

 
Fig. 2. Velocity profile. 

  
The basic solution whose stability we are interested in is one where the fluid is driven along the channel in the x -

direction by a constant pressure gradient of  form 

2= > 0,
p

k
x

∂
−
∂

  

where an over bar denotes the basic state, then, 

2 2= ,i iv M v kΔ Δ− −   

the basic velocity field corresponding to this pressure gradient has form = ( ( ),0,0)iv U z , such that 

2 (4)= ( ( ),0,0) and = ( ( ),0,0).i iv U z v U zΔ Δ′′   

Under these treatments, we have: 

(4) 2= ,U MU k′′− −   

where U ′′  and (4)U  are the second and fourth derivatives of  U , respectively. The boundary conditions are: 

( ) = 0, = 1,U z z ±  

 

( ) = 0, = 1,U z z′′ ±  

 

By solving the above equation and applying the boundary conditions we arrive at: 

2 2
2 2( ) = cosh( ) (1 ),

1 2
cosh( )

k M z k
U z k M z

M

M

− + −  
 

if  in our non-dimensionalization we take 2 = 2,k  then U  reduce to: 

22
( ) = cosh( ) 2 1 .

1
cosh( )

M z
U z M z

M

M

− + −  
 

The perturbation forms are: 

= and = .i iv U u p p π+ +   

Substituting the perturbed forms into equations (2), we obtain the perturbation equations: 

2

, , , , ,

,

( ) = ,

= 0.

i t j i j j i j j i j i i i

i i

Re u u u u U U u u M u

u

π Δ Δ+ + + − + −
 (4) 
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3. Linear Instability 

 To study linear instability, we ignore nonlinear terms in (4), then we obtain: 

2

, , , ,

,

( ) = ,

= 0,

i t j i j j i j i i i

i i

Re u u U U u u M u

u

π Δ Δ+ + − + −
 (5) 

 since = ( , , )iu u v w , then, the above equations can be written as the form: 

2

, ,1 ,1

2

, ,1 ,2

2

, ,1 ,3

( ) = ,

( ) = ,

( ) = ,

= 0.

t

t

t

x y z

Re u wU Uu u M u

Re v Uv v M v

Re w Uw w M w

u v w

π

π

π

Δ Δ

Δ Δ

Δ Δ

′+ + − + −

+ − + −

+ − + −

+ +

 (6) 

6We consider a solution forms: 

( ) ( )

( ) ( )

= ( ) , = ( ) ,

= ( ) , = ( ) .

i x y ct i x y ct

i x y ct i x y ct

u u z e v v z e

w w z e z e

α β α α β α

α β α α β απ π

+ − + −

+ − + −
 (7) 

Then, by substituting equations (7) in equations (6), yields: 

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

( ) = ( ) ( ) ,

( ) = ( ) ( ) ,

( ) = ( ) ( ) ,

= 0.

i Re U c u RU w i D u M D u

i Re U c v i D v M D v

i Re U c w D D w M D w

i u i v Dw

α απ α β α β

α βπ α β α β

α π α β α β

α β

′− + − + − − − − −

− − + − − − − −

− − + − − − − −

+ +

 (8) 

However, if  we add 1(7)α×  to 2(7)β× , and define: 

2 2 ˆ ˆˆ ˆ= , = , = , = and = ,a au u v w w aRe Re aα β α β α π απ+ +   

we obtain the system: 

2 2 2 2 2 2 2

2 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) = ( ) ( ) ,

ˆ ˆ ˆ ˆ( ) = ( ) ( ) ,

ˆ ˆ = 0,

ia Re U c u aReU w ia a D a u aM D a u

iaRe U c w D D a w M D a w

iau Dw

π

π

′− + − + − − −

− − + − − −

+

 (9) 

since ˆ ˆ=iau Dw− , then, equation (9) , reduces to: 

2 2 2 2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ( ) = ( ) ( ) .aRe U c Dw aReU w ia i D a Dw iM D a Dwπ′− − + − + − − −  (10) 

Now, remove the pressure terms by performing 2

2(10) (109)D ia× − × , yields: 

2 2 2 2 2 2 2 3[( )( ) ] = [( ) ( ) ] .iaRe U c D a U w D a M D a w′− − − − − −  (11) 

where ( 1,1)z ∈ − , with the following boundary conditions: 

3= = = 0, = 1.W DW D W z ±  (12) 

4. Nonlinear Theory 

 We use now the energy method to derive sufficient conditions to ensure the stability of  the steady-state solution, i.e., we 

will find value ERe  so that the steady-state solution is stable < ERe Re . Let ⋅� �  and are the norm and inner product 

on 
2 ( )L  , which have the form: 

2
= , = , ( ),f g f g dV f f f f g L


      � �   

where =dV dxdydz  is a volume element and let 
1( )H   be the complex Hilbert space of  measurable functions which 

is defined on   such that for
1( )f H  , we have: 

< .f f  � � � �   
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We also define the subspace 1 3[ ( )]H Ω∈H , where for = ( , , )u v w ∈u H , then, = 0∇⋅u , the components of  u  

satisfying (3) and is periodic modulo  . Assuming u H , and let ( )E t  is defined by: 

21
( ) =

2
E t u� �   

Now, we multiply the equation 
1

(4)  by 
i
u , yields: 

2

, , , ,

1
= ( [ ] ) ,

i i i i j i j j i j j i j

dE
u u M u u u u U U u

dt Re
            

integrating by parts for each of  these terms and applying , = 0i iu , we obtain: 

2 2

, ,

1 1
= ( ) ( ).

2
i j i j j i

dE
u u U U M

dt Re
       u u� � � �   

Now, let , ,

1
= ( )

2
ij i j j iF U U , thus, the energy equation can be reduced as: 

1
= ,

dE

dt Re
I D  (13) 

where  

2 2( ) = and ( ) = ,i j iju u F M    u u u uI D � � � �   

if  we define 
E

Re  by: 

1
= ,max

E
Re u H

I

D
 (14) 

therefore, if  <
E

Re Re , we have: 

( ),E

E

Re RedE

dt ReRe


 D   

then with   being the constant in poincaré’s inequality for u , we have ED , hence: 

( ) ( ) ( ) (0),tE

E

Re RedE
E t E t e E

dt ReRe

γα −−
≤− ⇒ ≤   

where = ( )E

E

Re Re

ReRe
γ α

−
. The decay of  ( )E t , and hence of  u  in an 2L  sense, follows from the above inequality. 

Now that global stability has been satisfied and then it remains to solve the variational problem (14). To solve the 

maximization problem we study the Euler Lagrange equations. For an arbitrary function ( )∈h u H . Hence: 

=0 =0 =0

( ) 1 1
| = ( ( )| ( )| ) = 0.

( ) ( ) E

d d d

d d Re d
ε ε ε

ε
ε ε

ε ε ε ε

+
+ − +

+

u h
u h u h

u h u

I
I D

D D
  

Now differentiate the I  and D  terms: 

=0 =0
( )| = ( )( ) |

= = 2 , such that is symmetric

i i j j ij

i j ij i j ij i j ij ij

d d
u h u h F

d d

u h F h u F h u F F

ε εε ε ε
ε ε

+ − 〈 + + 〉

−〈 〉−〈 〉 − 〈 〉

u hI
  

2 2 2

=0 =0
( )| = ( ( ) ( ) )| = 2 , .

i i i

d d
u M u h

d d
ε εε ε ε

ε ε
Δ Δ Δ+ ∇ + − + 〈 − 〉u h u h u hD � � � �   

The condition 
, = 0i ih  can be included through the Lagrange multiplier 2 ( )ζ x , so that: 

, ,2 = 2 .i i i ih hζ ζ〈 〉 − 〈 〉   
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Collecting together all terms in ih , 
I

D
 is at an extremum provided that: 

2

,( ) = 0.i i E j ij i iu M u Re u F hζΔ Δ〈 − − + 〉   

As h  was selected as an arbitrary function, and if  we identify ( )ζ x  with the pressure π , the Euler-Lagrange 

equations have the following form: 

2

,

,

= ,

= 0,

i i E j ij i

i i

u M u Re u F

u

πΔ Δ− − −
 (15) 

therefore, our aim is to solve (15) which represents an eigenvalue problem in ERe  to find the smallest Reynolds number 

ERe . By substituting = ( ( ),0,0)iv U z , in (15), the above system has the following final form: 

2

,

2

,

2

,

, , ,

1
= ,

2

= ,

1
= ,

2

= 0.

x

y

z

x y z

u M u RewU

v M v

w M w ReuU

u v w

π

π

π

Δ Δ

Δ Δ

Δ Δ

′− − −

− −

′− − −

+ +

 (16) 

The Euler-Lagrange equations which are resulted in (16) are not in the form such that Squire’s theorem can be applied. 
Therefore, here we examine the problems of  y−  and x− independent solutions. 

4.1 Stability with respect to a y-independent perturbation 

 Let = ( , ; )x z tu u , then (15), reduces to: 

2

,

2

2

,

1
= ,

2

= 0,

1
= ,

2

= 0,

x

z

x z

u M u RewU

v M v

w M w ReuU

u w

π

π

Δ Δ

Δ Δ

Δ Δ

′− − −

−

′− − −

+

 (17) 

where 
2 2

2 2
=

x z
Δ
∂ ∂
+

∂ ∂
. It is clear that the v  equation uncouples and the solution is = 0v . Thus, we can remove π  by 

performing 
1 3

(17) (1717)
z x

∂ ∂
× − ×

∂ ∂
, to have: 

2

, , , , , ,

1 1
( ) ( ) ( ) = 0,

2 2
z x z x x zu w M u w Re u w U RewUΔ Δ ′ ′′− − − + − −   

Differentiating above equation with respect to x  and using 4(17) , to substituting 
, ,=xx zxu w−  and 

, ,=xz zzu w−  we 

arrive at the eigenvalue problem: 

2 3

, ,

1
= 0,

2
xz xw M w Rew U Rew UΔ Δ ′ ′′− + +  (18) 

where ( 1,1)z ∈ − , we consider the solutions of  equation (18) as the form = ( ) iaxw w z e  and substituting this form into 

(18), we obtain: 

2 2 2 2 2 3 1
( ) ( ) ( ) = 0.

2
D a w M D a w iaRe U Dw wU′ ′′− − − + +  (19) 

where w  satisfies (12).  

 

4.2 Stability with respect to a x-independent perturbation 

 Now, for stability with respect to x− independent perturbation, we suppose that = ( , ; )y z tu u , then (15) reduces to: 
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2

2

,

2

,

, ,

1
= 0,

2

= ,

1
= ,

2

= 0,

y

z

y z

u M u RewU

v M v

w M w ReuU

v w

π

π

Δ Δ

Δ Δ

Δ Δ

′− −

− −

′− − −

+

 (20) 

we can eliminate π  by performing 2 3(20) (2020)
z y

∂ ∂
× − ×

∂ ∂
, yields: 

2

, , , , ,

1
( ) ( ) = 0,

2
z y z y yv w M v w Reu UΔ Δ ′− − − +   

differentiating above equation with respect to y  and using 4(20)  to substituting 
,=yy zyv w−  and 

, ,=yz zzv w− , yields: 

2 3

,

1
= 0.

2
yyw M w Reu UΔ Δ ′− −  (21) 

Now consider the solutions of  equation (21) as the form = ( ) iayu u z e  and = ( ) iayw w z e  and substituting this form into 

(21) and (20),: 

2 2 2 2 2 3 2

2 2 2 2 2

2( ) 2 ( ) = 0,

2( ) 2 ( ) = 0

D a w M D a w a ReuU

D a u M D a u RewU

′− − − +

′− − − −
 (22) 

5. Numerical Techniques 

 Since solving equation (11) is a very difficult numerical problem for finding the eigenvalues, we will utilize a very 
accurate numerical method, which is the Chebyshev collocation method. The eigenvalue systems of  linear instability and 
nonlinear stability theories have been solved using the Chebyshev collocation method, for more details see [25-33]. As 

these texts point out that the advantage in using the Chebyshev collection method is that it can achieve the required 
accuracy using a small number of  polynomials, allowing the achievement of  highly accurate results with short run time. 
Moreover, this method has the highest accuracy between the numerical methods and requires a smaller number of  
polynomials to achieve excellent accuracy and convergence. Also, the above texts note that the Chebyshev collection 
method is one of  the best choices in solving the hydrodynamic stability problems as it is a flexible method and it can give 

very accurate results. 

Firstly, the functions =A Dw  and 3=B D w  are introduced, then equation (11) can be written in the following form: 

2

4 6 3 ' 2 4

3 2 3

= 0,

= 0,

( ) (2 3 )

( 3 ) = .

Dw A

D A B

a a M ia ReU iaReU w a a M iaReU DA

D MD a MD B ia cRew iacReDA

′

−

−

+ + + − + +

+ − + −

 (23) 

The boundary conditions (12) have the form: 

= = = 0, = 1,A B w z ±  (24) 

To use the Chebyshev collocation method, we write solutions for the equations (23) and (24) as the sum of  a limited 
number of  Chebyshev polynomials, so these solutions take the following forms: 

=0 =0 =0

= ( ), = ( ), = ( ).
N N N

n n n n n n

n n n

w w T z A A T z B B T z∑ ∑ ∑  (25) 

where ( )nT z  are the Chebyshev polynomials of  the first kind, see [3], which is defined by: 

0 1( ) =1, ( ) =T z T z z  

1 1( ) 2 ( ) ( ) = 0, 1 1n n nT z zT z T z z+ −− + − ≤ ≤  
 

or 

( ) = cos( arccos( )), 1 1.nT z n z z− ≤ ≤   
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The expression (25) is employed in equations (23) and (24) and then the resulting equations are computed at Gauss-

Lobatto points iy  which are defined by = cos( /[ 3]), = 0, , 2iy i N i Nπ − −Κ . This gives 3 3N −  equations for 

3 3N +  unknowns 0 0 0, , , , , , , , .N N Nw w A A B BΚ Κ Κ  The remaining 6  equations are furnished by the boundary 

conditions (24) which becomes: 

1 2 3

=0 =0 =0

4 5 6

=0 =0 =0

: = 0, : ( 1) = 0, : = 0,

: ( 1) = 0, : = 0, : ( 1) = 0,

N N N
n

n n n

n n n

N N N
n n

n n n

n n n

BC w BC w BC A

BC A BC B BC B

−

− −

∑ ∑ ∑

∑ ∑ ∑
 (26) 

then approximated boundary conditions (26) are added as rows to the generated matrices to yield a (3 3) (3 3)N N+ × +  

eigenvalue matrix. Thus, we have the eigenvalue system: 

1

2

2

3

4

1 2 3

5

6

0,...,0 0,...,0
0,

0,...,0 0,...,0

0,...,0 0,...,0
=

0,...,0 0,...,0

0,...,0 0,...,0

0,...,0 0,...,0

D I O
O O O

BC

BC

O D I

BC
X c

BC

A A A

BC

BC

 −            −                       

3

...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0

,0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0

O O O

X

ia ReI iaReD O

                   −            

 (27) 

where 0 0 0= ( ,..., , ,..., , ,..., )N N NX w w A A B B , O  is the zeros matrix, 

4 6 3

1 1 2 1 2
1 1

( , ) = ( ( ) ( )) ( , ),
n n

A n n a a M iaReU y ia ReU y I n n′′+ + +  

2 4

2 1 2 1 2
1

( , ) = (2 3 ( )) ( , )
n

A n n a a M iaReU y D n n− + +  

2 3

3 1 2 1 2 1 2( , ) = (1 3 ) ( , ) ( , )A n n a M D n n MD n n+ −  

1 2
2 1

( , ) = ( )n nI n n T y , 
1 2

2 1
( , ) = ( )

n n
D n n T y′ , 2

1 2
2 1

( , ) = ( )
n n

D n n T y′′ ,  3

1 2
2 1

( , ) = ( )
n n

D n n T y′′′ , 

1 2= 0,..., 2, = 0,..., .n N n N−  

 

The above system has been solved using the QZ algorithm. For a perturbation , , ,u v w π  dependent on ,x z , we 

implement the Chebyshev collocation method to the eigenvalue problem (29) to obtain the linear system: 

1

2

2

3

4

1 2 3

5

6

0,...,0 0,...,0
0

0,...,0 0,...,0

0,...,0 0,...,0
=

0,...,0 0,...,0

0,...,0 0,...,0

0,...,0 0,...,0

D I O
O O O

BC

BC

O D I

BC
X Re

BC

A A A

BC

BC

 −            −                       

,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0

,0,...,0 0,...,0 0,...,0

4 5

0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0

O O O

X

A A O

                               

 (28) 

2 2 2 2 2 3 1
( ) ( ) ( ) = 0.

2
D a w M D a w iaRe U Dw wU′ ′′− − − + +  (29) 

where 0 0 0= ( ,..., , ,..., , ,..., )N N NX w w A A B B , 5 1 2 1 2
1

1
( , ) = ( ) ( , ),

2
nA n n iaU y I n n′′  

5 1 2 1 2
1

( , ) = ( ) ( , ),
n

A n n iaU y I n n′  and 

1 2= 0,..., 2, = 0,..., .n N n N−  However, for the eigenvalue system for x −  independent solutions (22), the Chebyshev 

collocation method yields the eigenvalue system of  the form: 
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ˆ ˆ= ,AX ReB  (30) 

where  

1

2

2

3

4

1 2 3

5

6

0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0ˆ =
0,...,0 0,...,0 0,..

D I O O O

BC

BC

O D I O O

BC

BC

A A A O O

BC
A

BC

−

−

2

7

8

9

10

.,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0

6 7

0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0

O O O D I

BC

BC

O O O A A

BC

BC


 −



,

       

 (31) 

8

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

ˆ = 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0

O O O O O

O O O O O

O O O A O

B

O O O O O

9

,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

A O O O O

 


,



 (32) 

0 0 0 0 0= ( ,..., , ,..., , ,..., , ,..., , ,..., ),N N N N NX w w A A B B u u C C  

2

7 8

=0 =0

= , : = 0, : ( 1) = 0,
N N

n

n n

n n

C D u BC u BC u−∑ ∑   9 10

=0 =0

: = 0, : ( 1) = 0,
N N

n

n n

n n

BC C BC C−∑ ∑  
(33) 

2 4 2 2

6 1 2 1 2 7 1 2 1 2 1 2( , ) = ( ) ( , ), ( , ) = (1 2 ) ( , ) ( , ),A n n a Ma I n n A n n a M I n n MD n n− + + −  

2

8 1 2 1 2 9 1 2 1 2
1 1

1 1
( , ) = ( ) ( , ), ( , ) = ( ) ( , ),

2 2
n nA n n a U y I n n A n n U y I n n′ ′−  

and 1 2= 0,..., 2, = 0,..., .n N n N−  

(34) 

For a given a  and M , then we use QZ  algorithm of  Matlab routines to solve the eigenvalue system, and next, we 

iterate this procedure over choices of  a , tracking the smallest eigenvalue until we have found the critical Reynolds 

number which we denote by ERe . 
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(a) (b) 

  

(c) (d) 

Fig. 3. Critical Reynolds number ReL against M. 

6. Numerical Results 

 In Table 1, the numerical results for the critical value Re  are displayed for linear instability and nonlinear energy 

stability theory. It is very clear that there is a big difference between linear and nonlinear thresholds. This difference 
shows that there is a potential region of  subcritical instabilities area may arise. 
The critical Reynolds numbers are shown in Fig. 3, where instability curves were plotted as a function of  the couple 

stresses coefficient M . The curves can be explained as follows. For instance, when 0 < 0.002M ≤ , the instability 

curve has been shown in Fig. 3 (a). For Re  values below this curve, the solution is linearly stable, and the imaginary 

part of  all eigenvalues is negative, i.e. < 0ic . For Re  values that are above this curve, then we should have at least one 

eigenvalue which has the imaginary part is positive, i.e. > 0ic  and the solution grows exponentially and is unstable. A 

similar explanation holds for the other Figures. We note that as M  increases, the critical Reynolds number increases 
substantially. This shows the strong stabilizing effect of  the couple stresses coefficient M . Thus, the increasing M  
value leads to strongly increase the threshold at which instability commences. 

The critical values of  rc  as a function of  M  have shown in Fig. 4. As M  vary, these values refer to how oscillatory 

the solution is in time at the start of  instability. 

The critical wavenumber curves against M  are displayed in Fig. 5, where M  varying over the range = 0M  to 

=1M . These curves are explained as those for LRe , where above these curve we have instability region, while the 

region below these curves are linearly stable. We also note that the values of  critical wavenumber increase with 
increasing the values M  and this means that the periodic cells of  the w  become smaller in the x  and y  directions. 

In Fig. 6, the eigenvalues spectrum are introduced and we have found that are similar to that found for Poiseuille flow in 
a porous medium with no-slip boundary conditions in [21] and slip boundary conditions in [9]. The eigenvalues 

displaying a Y  shape in the ( , )r ic c  diagram. As M  increase, the eigenvalues at the intersection of  the three lines in 

the Y  become more numerically unstable, and this effect becomes clearer when the value of  M  is increased.  
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(a) (b) 

  

(c) (d) 

Fig. 4. Critical value of  cr against M. 

The spectrum of  (23) and (24) acting very like to that of  the Orr-Sommerfeld problem for classical Poiseuille flow. For 

example, for higher Reynolds numbers we witnessed mode crossing of  eigenvalues. For instance, for = 0.5M , the first 

and second eigenvalues interchange places for Re  between 55500  and 55502 , respectively, with the previous first 

eigenvalue moving down the list as Re  increases. This behavior is very like to that noted in [3]. Also, the spectrum is 

highly sensitive and the number of  polynomials that are used in the numerical approximation should be carefully 

selected, and in the arithmetical precision used in the calculation (those shown here are all 64s  bit arithmetic). The 

spectrum for = 0.3, = 5M a  and 6= 10Re  are shown in Fig. 5, respectively, for different values of  N . Since U  is an 

even function of  z , then, the proper solution of  the eigenvalue system (23) and (24) locates in two unincorporated 
groups for even and odd solutions. 
An interesting question for this problem can appear which relates to the accuracy of  the expected results when 
comparing the results of  linear instability and nonlinear stability theories. Therefore, this problem is one of  the most 
difficult flow problems even in a clear fluid with slip and no-slip boundary conditions, see e.g. [2, 9]. The results of  the 

linear instability guarantee that the solution is not stable for the Rayleigh number which exceeds the linear threshold. 
However, it does not guarantee stability when the Rayleigh number is below this. The nonlinear energy stability 
thresholds of  nonlinear show the stability only where the solution is stable if  the Rayleigh number is below this threshold, 
however, they say nothing about instability. Therefore, in this paper, we compute the nonlinear energy stability 
thresholds for our problem, just as in porous medium with the conditions of  no-slip boundary by Hill & Straughan [11], 

and as was done for a clear fluid with slip boundary conditions by Webber & Straughan [8]; the work which are also 
carefully reported in chapter 3 of  Webber [22]. For the current problem, the nonlinear energy stability thresholds which 
confirm the area of  the stability of  the solution are well below those of  linear theory. This is one field in which the 
theory of  nonlinear stability is not useful, and from these not unknown scenarios in other fields of  mechanically fluid, 
see. Straughan [23], where there is a big difference discrepancy between the linear instability and the nonlinear stability 

thresholds. This shows that there is a potential region of  subcritical instabilities area may arise. A fully three-dimensional 
simulation for some problems [24-29] shows that there is a region of  subcritical instability below the linear instability 
threshold, but well above the nonlinear energy stability boundary. 
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(a) (b) 

Fig. 5. Critical wavenumber aL against M. 

Table 1. Critical Reynolds number Re, wavenumber a and wave speed cr against couple stresses number M. 

M ReL aL cr 
xz

ERe  xz

Ea  yz

ERe  yz

Ea  

0.1 9151.467 1.556 0.38 365.39 1.862 140.967 1.72 

0.2 17150.775 1.58 0.325 720.667 1.827 259.884 1.661 
0.3 27174.461 1.589 0.282 1167.031 1.814 408.652 1.634 

0.4 39232.453 1.595 0.248 1705.333 1.806 587.354 1.62 
0.5 53325.548 1.598 0.221 2335.794 1.796 796.01 1.61 

0.6 69454.032 1.6 0.2 3058.484 1.797 1034.628 1.603 

0.7 87617.993 1.602 0.182 3873.448 1.79 1303.209 1.599 
0.8 107817.56 1.602 0.167 4780.716 1.788 1601.757 1.595 

0.9 130052.74 1.603 0.155 5780.265 1.787 1930.271 1.592 
1 154323.72 1.604 0.144 6872.148 1.786 2288.752 1.59 

Table 2. Comparison between the critical Reynolds numbers (minimized over the wavenumber) of  Takashima [20], Hill & Straughan 

[11], Harfash [34], and this paper for 0M = . 

Methods critR  

Takashima [20], Chebyshev collocation by imposing BCs. 5772.2218 
Hill & Straughan [11] Chebyshev-Tau method 5772 

Harfash [34] Chebyshev collocation method with even Polynomials 5772.22198 

Harfash [34], Finite element 5771.920022 
The present work 5772.222169 

Finally, in order to validate our numerical method, we compare the critical Reynolds numbers of  Takashima [20], Hill & 

Straughan [11], Harfash [34], and this paper for = 0M . In the other studies M  has different definitions but = 0M  

the equivalent of  the Orr-Sommerfeld eigenvalue problem becomes identical and therefore the critical Reynolds numbers 

should also identical. It is noted that there is very little variation with the critical Reynolds numbers observed by the 
other studies, as is shown in Table 2. This confirms the high accuracy of  the numerical method which is used in this 
paper. 

  
(a) 75N =  (b) 100N =  

Fig. 6. Spectral of  growth rate = r ic c ic+ at M = 0.3. 



Poiseuille flow with couple stresses effect and no-slip boundary conditions  

 

Journal of  Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1069-1083 

1081 

  
(c) 125N =  (d) 150N =  

  

  
(e) 175N =  (f) 200N =  

Fig. 6. Continued. 

7. Conclusions 

 A linear instability analysis and nonlinear stability analyses for Poiseuille under the effect of  couple stresses were 
presented. In deriving the equations governing the stability, a simplification was made using the fact that and the flow 
was driven by a constant pressure gradient in the direction. Using modified Squire’s transformations, it was established 
the nonlinear stability for and disturbances. Also, the Chebyshev collocation method with the algorithm was used for 
solving the stability equations to find the eigenvalues. The secant and the golden section search were also utilized to 
compute the critical values. The critical numerical values of  Reynolds number, wave number, and wave speed were 

computed for several selected values of  the couple stress coefficient. For Poiseuille flow, we can conclude that the couple 
stresses have a stabilizing effect on the flow where as increases, the critical Reynolds number increases to stabilize the 
flow. The results of  the present study confirm the impact of  the non-Newtonian effects on the flow instability. Hence, 
further works can be provided to study the linear instability and nonlinear stability behaviors of  new fluids such as 
suspension and slurries of  nano-encapsulated phase change materials, see for examples [35-39]. 
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