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Abstract. A numerical analysis is performed on entropy generation in a radiative and dissipative hydromagnetic 

micropolar fluid prompted by a nonlinearly stretching sheet with the impact of  non-uniform heat source/sink, variable 
magnetic field, electrical conductivity, and dynamic viscosity. The main equations are computationally solved via 
shooting techniques in the company with Runge-Kutta algorithms. The impact of  the prominent controlling parameters 
is graphically checked on the velocity, temperature, microrotation, entropy generation, and Bejan number. An excellent 

relationship exists between the results obtained with related studies previously reported in the literature in the limiting 
conditions. More so, it is revealed by the findings that the irreversibility due to heat transfer is dominant over viscous 
dissipation irreversibility as the radiation parameter advances while the trend changes with the Brikman number 
parameter. 

Keywords: Entropy generation; Micropolar fluid; Inclined sheet; Variable viscosity; Stretching sheet. 

1. Introduction 

The micropolar fluid has gained prominence among other non-Newtonian fluids owing to its special characteristics 
in modeling and simulating various complex and complicated fluids with rigid, bar-like particles. These fluids consist of  
microstructure and cannot be effectively explained by the Navier-Stokes model. Such fluids include polymeric fluids, 

fluid suspensions, animal blood, lubricants, liquid crystals, colloidal fluids and so on [1-2]. The micropolar fluid concept 
as derived by Eringen [3-4] has to do with the category of  fluids which tend to display some microscopic effect resulting 
in both translation and rotation of  the fluid element. In this model, the field of  microrotation and macro-velocity are 
coupled together. The possible applications of  such fluids in engineering and industrial operations can be found in the 
bio-mechanic and chemical engineering, extrusion of  polymer, slurry technologies, synovial lubrication, arterial blood 

flows, knee cap mechanics, a few of  many [5-7].  
The study of  boundary layer flow activated by stretching sheet has since been considered by various researchers from 

the time it was initially reported by Sakiadis [8]. Subsequently, Crane [9] analytically investigated such a problem on a 
two-dimensional linearly stretching sheet where the velocity and the distance from the slit vary proportionally to each 
other. This kind of  study is applicable in textile production, extrusion of  plastic sheet and metal, ceramic engineering 

operations, drawing of  copper wires, glass blowing, etc. In view of  these consequential applications, various scientists 
and researchers [10-14] have researched this subject considering different parameters, boundary conditions, and 
geometries. Meanwhile, it has been observed that the stretching of  the sheet may not always be linear (see Cortell [15]). 
To this end, [15-16] studied heat transfer problems on nonlinear sheet with the impact of  viscous dissipation and 
radiation with constant and prescribed surface temperature conditions on the wall, Alinejad and Samarbakhsk [17] 
numerically investigated such problem with uniform surface temperature while Daniel [18] also reported such subject on 
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nanofluid with convective heat transfer. However, unlike the previous authors who discussed only on Newtonian fluid, 
[19-21] have examined the situations where the fluid is a non-Newtonian micropolar type over a nonlinearly stretching 

sheet with various parameters of  interest. In these studies, however, magnetic field effects have been ignored in spite of  
its importance. 

The benefits derived from the study of  hydromagnetic fluid flow coupled with heat transfer characteristics passing 
stretching sheets are enormous both in the manufacturing and engineering processes particularly in the metal-working 
and metallurgical operations for instance, in MHD generators, nuclear reactors geothermal energy extractions, etc. [22]. 

The magnetic field can be used to heat up, pump, levitate liquid metals and for purifying molten metals from non-
metallic inclusions. In view of  these crucial applications, Shamshuddin et al. [22] addressed the non-linear steady, 
hydromagnetic micropolar flow with radiation and heat source/sink effects included. Similarly, Waqas et al. [23] 

investigated MHD flow of  micropolar fluid induced by a nonlinear stretching sheet with viscous dissipation and Joule 
heating effects while Shamshuddin and Thumma [24] numerically discussed heat and mass transfer characteristics of  a 
micropolar fluid along an inclined plate in a porous medium under the influence of  magnetic field. 

The above studies, however, have been carried out with the assumption of  constant fluid properties but it has been 

observed that the fluid physical properties especially the viscosity is dependent on the temperature. It has also been 
verified that a rise in temperature causes the transport phenomena to escalate due to a decrease in the viscosity across the 
hydrodynamic boundary layer which could also affect the thermal boundary layer as well as the rate of  heat transfer at 
the surface [19]. Experiments have also revealed that the strength of  viscosity is proportional to the temperature in gases 
while in liquids it is inversely related (see Khan et al. [25]). For a realistic solution, therefore, it is crucial to examine the 

variation of  viscosity with temperature in the flow field. In view of  various engineering and industrial applications 
attached to such studies such as in hot rolling, food processing, the process of  wire drawing, paper and textile production, 

[22] discussed the effect of  variable viscosity in hydromagnetic Newtonian fluid past a heated sheet. Rahman [26] 
examined the influence of  variable fluid properties with the convective condition at the boundary. Also, researchers such 
as [27-28] have examined such a study where the viscosity has either direct or inverse relation with the temperature on 
both Newtonian and non-Newtonian micropolar fluids. Meanwhile, all these were carried out only with the first law of  
thermodynamics, however, investigations conducted with the second law of  thermodynamics which corresponds to 

entropy generation have been found to be dependable than those conducted using the first law (see Kobo and Makinde 
[29]). 

The study of  entropy generation in a system has been a concern to researchers due to the practical applications of  
such subjects in various areas. In heat transfer problems, entropy generation is a means of  measuring the irreversibility 
that takes place in a system with the use of  the second law of  thermodynamics [29]. The entropy generation also 

measures the level of  the work destruction that is available in a system, therefore, it becomes germane to figure out the 
entropy generation rate in a system with a bid to upgrade such a system. Furthermore, research into entropy generation 
in a system sheds light on the sources by which available energy is destroyed in a system such that it becomes clear that 
those sources which contribute to entropy can be identified and possibly minimized as to achieve optimal energy needed 
in a system. Such a concept was initiated by Bejan [30-31] while studying heat transfer and thermal design by the use of  
the second law of  thermodynamics. Also, Makinde [32] in a related work discussed the combined influence of  radiative 
and dissipative hydromagnetic Newtonian fluid with varying viscosity and entropy generation while Salawu et al. [33] 

reported entropy generation analysis of  hydromagnetic Powell-Eyring fluid flow having variable conductivity with the 
influence of  chemical reaction in a porous channel. Recently, a numerical approach via Finite difference technique was 
employed by Alsabery et al. [34] to analyze entropy generation with natural convection using nanofluid being influenced 

by varying temperature distributions. Meanwhile, Afridi et al. [35] numerically examined mixed convection entropy 

generation in MHD Newtonian fluid moving along an inclined sheet. In the light of  engineering usefulness derived from 
studies related to entropy production analysis, various researchers have investigated such studies with different 
parameters, geometries, wall conditions and various kinds of  fluids (see [36-40]). All these researches were however 
carried out on a linearly stretching sheet without due consideration for nonlinear stretching surfaces which is the focus of  

this study. 
 In particular, the current study tends to analyze entropy generation in a hydromagnetic micropolar fluid passing an 

inclined nonlinear permeable stretching sheet with variable electrical conductivity and temperature-dependent viscosity. 
A numerical solution is carried out to identify and discuss the impact of  different parameters incorporated in the work. 
Considering the enormous works done on irreversibility analysis on various geometry, attention has not been given to the 
problem discussed in this work in the literature. Specifically, this study is an extension to the work of  [35] with the 

following under listed uniqueness:   
• This work has been conducted with non-Newtonian micropolar fluid as against the Newtonian fluid engaged by those 

authors.  
• It generalizes the work of  [35] by considering a nonlinear surface instead of  a linear surface of  those authors.  
• The influence of  temperature-dependent viscosity effect which the authors did not consider in spite of  its importance.  

• The presence of  the effect of  radiation effect and that of  suction/injection in the present work which was neglected 
by those authors.  

• The inclusion of  the Joule heating effect as well as that of  the heat source/sink effect which was not accounted for in 
[35]. 
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2. Mathematical Development of the Model 

The model investigated in this study consists of  the entropy production analysis on a two-dimensional steady flow of  
an incompressible hydromagnetic micropolar fluid along with a nonlinearly stretching sheet that is inclined at angle φ  

as illustrated in Fig. 1. The electrical conductivity is dependent on the velocity component u in the x direction (see Eq. 6), 

the applied magnetic field parallel to y axis is normal to the flow direction and is a function of  x  as (0, ( ))B B x=  (see 

Eq. 7) with x being the coordinate along the surface while 0B  is strength of  the magnetic while the induced magnetic 

field is assumed to be negligible. The dynamic viscosity is assumed to be inversely proportional to temperature (see Eq. 

9) while the heat source/sink is assumed to be non-uniform (see eq. 8). The sheet stretches with a velocity u c ,rx=  

along x direction where 0c >  is a constant and r  is the nonlinear stretching parameter. The influences of  pressure 

gradient, electric field and body forces are neglected. 

 

Fig. 1. The Sketch of  the Physical Model 

 
In view of  the Boussinesq and boundary layer approximations together with the aforementioned assumptions, the 
modeled equations are stated as ([41-42]) 
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The relevant boundary conditions for this model are as follows: 
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The wall temperature parameter is indicated by n , while the suction/injection term is denoted by wv  with 

( )1

2
0

r

wv V x

−

=  

[43-44] where 0V  is a constant and h  is a boundary parameter having characteristics 0 1h≤ ≤ . The electric 
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conductivity is assumed to be (see Helmy [45]): 

0 0' uσ σ=  (6) 

also, the magnetic field is a function of  x  given as ([6, 42]). 

0( )
B

B x
x

=  (7) 

where 0σ and 0B are constants. Following [46], the non-uniform heat source/sink q ′′′  written in eq. (4) is expressed 

as: 
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with 1rH bx∗ −=  and 1rJ b x∗ ∗ −=  being the space and heat dependent source/sink respectively. When 0H ∗ >  and 

0J ∗ > then heat is generated whereas heat is absorbed when 0H ∗ < and 0J ∗ < . The variation of  the viscosity with 

temperature is described in Eq. (9), see [32, 47], 
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where A  is a constant corresponding to the fluid thermal property, μ∞  indicates the free stream fluid viscosity B  and 

rT  are constants. In line with previous authors [48-49], similarity variables (11) are used to non-dimensional the 

modeled equations: 
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Furthermore, with the use of  quantities in eq.(11) and taking cognizance of  Eqs. (6-9) the governing Eqs. (2-4) yield the 
under listed equations:  
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The parameters described in eq. (16) are defined in the nomenclature. The relevant quantities of  engineering interest are 
the skin friction coefficient and the Nusselt number as given in eq. (17) in that order. 
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 with wτ being shear stress and wq  heat flux at the surface such that 
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in view of  Eqs. (11) and (18), the skin friction coefficient yields 
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and the Nusselt number becomes 
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 3. Entropy Generation 

In line with previous researchers (see [35, 40, 50]) the description of  entropy generation rate in a radiative and 
dissipative hydromagnetic micropolar fluid flow of  micropolar fluid can take the form 
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The sources of  entropy generation in eq. (21) include that of  heat transfer which is indicated by the first term on the right 
of  Eq. (21), the viscous dissipation induced entropy production as a result of  fluid friction is denoted by the second term 
while the last term describes the generation of  entropy by Ohmic heating. In dimensionless form, and setting r = 1, then 

Eq. (21) becomes: 
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where Ns describes the overall entropy production in the system and g cS kc ν=  indicates the characteristic entropy 

generation. Moreso, Br = Pr × Ec denotes the Brikman number whereas ( )wT T TΩ ∞ ∞= −  represents the non-
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Fig. 2. Velocity field for micropolar parameter K  Fig. 3. Microrotation profiles for variation in K  

  

Fig. 4. Velocity field for variation of r Fig. 5. The impact of  r on microrotation profiles 

where Be is the Bejan number ,h t vdN N  and ohN  represent entropy production from heat transfer, viscous dissipation, 

and Ohmic heating in that order. The Bejan number Be  is given in Eq. (23 or 24) lies in the interval 0 Be 1≤ ≤ . The 

dominance of  ( )vd ohN N+  over h tN occurs when Be 0= this indicates that entropy production as a result of  heat 

transfer htN is dominated by those of  viscous dissipation and Ohmic heating ( vd ohN N+ ). Contrarily, when 1Be = it 

implies that generation of  entropy due to thermal heat transfer dominates that of  viscous dissipation and Ohmic heating 

while the case Be 1 2=  signifies that N ( )ht vd ohN N= + .  

4. Numerical Method and its Validation 

A computer algebra symbolic Maple 2016 package is used in solving Eqs. (12) to (14) together with the boundary 
conditions (15). The numerical procedure is based on Runge-Kutta techniques of  fourth-order entrenched with a 
shooting scheme. To authenticate the numerical code employed in this study, the computational values of  heat transfer at 
the sheet surface have been cross-checked with existing data reported by Grubka and Bobba [51] in the limiting 

condition that is recorded in Table 1. We hereby remarked that a good relationship exists between the current work and 
the existing work of  [51]. Moreso, it is pointed out from Table 1 that higher values of  Prandtl number enhance the 
transfer of  heat. Similarly, an increase in the absolute value of  the wall temperature parameter n facilitates the transfer 

of  heat. 
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Fig. 6. The impact of  n on temperature Fig. 7. The reaction of Q on velocity 

  

Fig. 8. The velocity field for varying φ  Fig. 9. Temperature profiles for changes in /α β  

Table 1. Computed values of 
xNu as compared with [51] for changes in n and Pr, 1, 0r K Ec M fwα β= = = = = = = and Q→∞  

 Grubka & Bobba [51] Present 

n Pr 0.72=  Pr 1.0=  Pr 0.72=  Pr 1.0=  

- 2.0 0.7200 1.0000 0.72069 0.99945 

- 1.0 0.0000 0.0000 -0.00110 0.00012 

0.0 -0.4631 -0.5820 -0.46359 -0.58201 

1.0 -0.8086 -1.0000 -0.80883 -1.00001 

2.0 -1.0885 -1.3333 -1.08862 -1.33333 

3.0 -1.3270 -1.6154 -1.32707 -1.61538 

Likewise, the computed values fxC  are validated by those reported by Ulla et al. [52] as well as that of  Lu et al. [53] for 

changes in the nonlinear stretching parameter r , these are displayed in Table 2. Observation reveals that with higher 

values of  ,r  the skin friction coefficient fxC  advances which are in consonance with those authors compared with [56-

57] as shown in Table 2. 
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Table 2. Computed values of fxC as compared with existing results, variation of  r, 0K Ec M fwλ α β= = = = = = =  and Q→∞  

r Ulla et al. [52] Lu et al. [53] Present 

0.0 0.6276 0.627547 0.627563 

0.2 0.7668 0.766758 0.766846 

0.5 0.8896 0.889477 0.889552 

1.0 1.0000 1.000000 1.000008 

1.5 - 1.061587 1.061609 

3.0 1.1486 1.148588 1.148601 

10.0 1.2349 - 1.234882 

100.0 1.2768 - 1.276781 

6. Results and Discussion 

The reactions of  the main physical parameters on the dimensionless velocity, microrotation, temperature, entropy 
generation rate and Bejan number are hereby presented in form of  graphs with appropriate analysis. In the numerical 

computations carried out, use has been made of  the following values as the default parameter values unless otherwise 

stated on the graphs. 5.0, 2.0, 0.1, 4.0, 0.5,Q K M Ec r n Nrλ= = = = = = = = 0.2 0.2, 0.3fw Br α β= = = = = , 

Pr 0.71,= 6φ π=  and 0.1,Ω= Figures 2 and 3 exhibit the behavior of  velocity and microrotation profiles with 

variation in the material (micropolar) parameter K . 
The plot in Fig. 2 reveals that increasing the magnitude of  K thickens the boundary layer and in consequence enhancing 

the velocity distribution. This response can be linked to a reduction in viscosity as the magnitude of  material parameter 
K grows. In Fig. 3, it is noticeable that the microrotation profile appreciates from negative to positive as K rises in 

magnitude. The negative values illustrate that there is a reverse rotation of  the micro-particles. The graph depicting the 
response of  velocity profiles to variation in a nonlinear stretching parameter r  is described in Fig. 4. One noticeable 
feature in this plot is that the hydrodynamic boundary layer thins out as r  rises and in response, the fluid locomotion is 

reduced as seen in Fig. 4. This behavior is consistent with the report of  [49]. On the other hand, the microrotation 
profiles fall with a rise in r  with a reverse spinning of  the micro-particles as demonstrated in Fig. 5. Figure 6 explains 
that the impact of  the wall temperature parameter n  is to reduce the thickness of  the thermal boundary layer and 

consequently diminish the temperature distribution but enhances heat transfer. The behavior of  the velocity field for 
changes in the viscosity parameter Q  is demonstrated in Fig. 7. It is actually shown that the fluid velocity is lowered as 

the strength of  the viscosity parameter Q  grows, the stronger the viscosity, the lesser the fluid locomotion, this response 

agrees well with [19, 54]. Figure. 8 exhibits the behavior of  velocity profiles with changes in the values of  the inclination 
angle φ , it shows that increasing φ decelerates the fluid velocity. The velocity of  the fluid when the sheet is vertical i.e. 

0φ =  is shown to be higher than when the sheet is inclined, this is because the influence of  buoyancy drops by a factor 

cosφ due to inclination and this leads to a reduction in the magnitude of  the buoyancy driving force and at such less 

induced flow across the boundary layer takes place. 
Meanwhile, the thermal boundary layer increases in thickness and the temperature field appreciates with a rise in both 

space and temperature-dependent heat source parameters ,α β as displayed in Fig. 9. This observation agrees well with 

the physical point of  view since the inclusion of  /α β  has the likelihood to boost the fluid temperature to rise.  

  

Fig. 10. Entropy generation for material parameter K  Fig. 11. Bejan number for K  
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Fig. 12. Entropy generation for radiation parameter Nr  Fig. 13. Bejan number for radiation parameter Nr  

  

Fig. 14. Entropy generation for Brikman number Br  Fig. 15. Effect of  Brikman number Br on Bejan number. 

The graph showing the variation of  K  entropy generation rates Ns  is demonstrated in Fig. 10. It conspicuously is 

shown that higher values of K decreases entropy generation close to the wall only but further away at a distance 2.0η ≈ , 

the profiles intersect and a reverse trend is observed. However, Fig. 11 points out that the growth of  K  decelerates the 
Bejan number striking feature here is that heat transfer irreversibility falls with rising values of  K while entropy 

production due to viscous dissipation and Ohmic heating take dominance.  
The sketch relating to entropy generation versus η  for variation in the radiation parameter Nr  is displayed in Fig. 12. 

It is revealed that a rise in Nr causes the entropy production in the system to rise, thus, the minimization of  the entropy 

can be obtained by reducing the radiation. Figure 13 exhibits the response of  Be with changes in the radiation 

parameter Nr , the fact from this plot indicates that with higher values of  Nr , heat transfer irreversibility dominates that 

of  viscous dissipation and Ohmic heating. Figure 14 behavior explains that rising values of  Brikman number Br  which 
is the product of  Eckert and Prandtl number, causes the entropy production Ns to escalate especially near the sheet 

whereas with rising values of ,Br the Bejan number Be falls as exhibited in Fig. 15 with the dominance of  viscous and 

Ohmic heating irreversibility over heat transfer irreversibility.  
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7. Conclusion 

Entropy generation in a hydromagnetic micropolar fluid passing an inclined nonlinear permeable stretching sheet 
with the impact of  variable viscosity was analyzed in the current study. Solutions to the modeled equations were found 

by means of  shooting techniques in the company with the Runge-Kutta algorithm. Validation of  the numerical code was 
done with previously conducted related study in literature for some limiting conditions and found to be highly related. 
The influences of  the main physical parameters were found and explained with the aid of  different graphs. From our 
results, we note that:   

 • The entropy production advances with a rise in the radiation Nr and Brikman number Br whereas there is a fall in 

the entropy generation rate near the wall only with a rise in material(micropolar) parameter K .  
 • Heat transfer irreversibility takes preeminence over irreversibility due to viscous dissipation and Ohmic heating with 

an increase in the radiation parameter Nr whereas the opposite is the case with a rise in material (micropolar) K and 

Brikman number Br  parameters.  
 • The velocity profiles appreciate for higher values of  the material (micropolar) parameter K but the reverse trend 

occurs for the nonlinear stretching r and inclination angle parametersφ .  

 • The thermal boundary layer thickness grows with space and temperature-dependent heat source parameters 

,α β while the trend is reversed with a rise in wall temperature parameter n . 
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Nomenclature 

0B  magnetic field strength 2[ ]Wbm−  u  velocity in x direction  1[m s ]−  

f xC  skin friction coefficient v  velocity in y direction 1[m s ]−  

pc  specific heat capacity [J/ kgK]  wv  suction/injection velocity 1[m s ]−   

Ec  Eckert number  Greek Symbols 

f  non-dimensional stream function α  space-dependent heat source/sink 

fw  suction/injection parameter β  temperature-dependent heat source/sink 

g  non-dimensional microrotation 
Tβ  coefficient of  thermal expansion 1[K ]−  

1g  acceleration due to gravity γ  spin gradient viscosity 2 1[m s ]−  

j  micro inertial density 3[kgm ]−  η  similarity variable 

k  thermal conductivity 1 1[ ]Wm K− −  θ  dimensionless temperature 

K  material parameter λ  buoyancy parameter 

k∗  mean absorption coefficient 1[ ]m−  rμ  Vortex viscosity [pa ]s  

M  magnetic field parameter μ  Newtonian viscosity 1 1[kg m s ]− −  

Nr  radiation parameter ν  kinematic viscosity 2 3[m s ]−  

xNu  Nusselt number ρ  fluid density 3[kg m ]−  

Pr  Prandtl number σ ∗  Stefan-Boltzmannconstant 1 4[Wm K ]−  

Q  viscosity variation parameter 
0σ  electrical conductivity 1[S ]m−  
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'''q  heat source  3 1[ ]Wm K− −  φ  inclination angle [rad]   

wq  surface heat flux  2[ ]Wm−  ψ  stream function 2 1[m s ]−  

r  nonlinear stretching parameter ω  microrotation component 1[ ]s−  

T  temperature [K]   Superscripts and subscripts 

wT  surface temperature [K]  w  surface conditions 

T∞  free stream temperature [K]  ∞  free stream conditions 
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