تعداد نشریات | 29 |

تعداد شمارهها | 523 |

تعداد مقالات | 3,845 |

تعداد مشاهده مقاله | 3,384,108 |

تعداد دریافت فایل اصل مقاله | 2,687,089 |

## Analysis of Fluid Dynamics and Heat Transfer in a Rectangular Duct with Staggered Baffles | ||

Journal of Applied and Computational Mechanics | ||

مقالات آماده انتشار، اصلاح شده برای چاپ ، انتشار آنلاین از تاریخ 11 دی 1397 اصل مقاله (5859 K) | ||

نوع مقاله: Research Paper | ||

شناسه دیجیتال (DOI): 10.22055/jacm.2018.26023.1305 | ||

نویسندگان | ||

Younes Menni ^{} ^{1}؛ Ahmed Azzi^{1}^{، 2}؛ Ali J. Chamkha^{3}^{، 4}؛ Souad Harmand^{5}
| ||

^{1}Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bekr Belkaid University, BP 119-13000-Tlemcen, Algeria | ||

^{2}Department of Mechanical Engineering, Faculty of Technology, Abou Bekr Belkaid University, BP 230-13000-Tlemcen, Algeria | ||

^{3}Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia | ||

^{4}RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates | ||

^{5}Thermique Ecoulement Mecanique Materiaux Mise en Forme Production - TEMPO - Universite de Valenciennes et du Hainaut Cambresis, BP 59313 Valenciennes CEDEX 9, France | ||

چکیده | ||

This computational fluid dynamic analysis attempts to simulate the incompressible steady fluid flow and heat transfer in a solar air channel with wall-mounted baffles. Two ꞌSꞌ-shaped baffles, having different orientations, i.e., ꞌSꞌ-upstream and ꞌSꞌ-downstream, were inserted into the channel and fixed to the top and bottom walls of the channel in a periodically staggered manner to develop vortices to improve the mixing and consequently the heat transfer. The analyses are conducted with the Commercial CFD software FLUENT using the finite volume method for Reynolds number varying from 12,000 to 32,000. The numerical results are presented in terms of streamlines, velocity-magnitude, x-velocity, y-velocity, dynamic pressure coefficient, turbulent kinetic energy, turbulent viscosity, turbulent intensity, temperature field, coefficient and factor of normalized skin friction, local and average numbers of normalized Nusselt, and thermal performance factor. The insertion of the S-shaped baffles in the channel not only causes a much high friction loss, f/f = 3.319 - 32.336, but also provides a considerable augmentation in the thermal transfer rate in the channel, _{0}Nu/Nu = 1.939 - 4.582, depending on the S-baffle orientations and the Reynolds number. The S-upstream baffle provides higher friction loss and heat transfer rate than the S-Downstream around 56.443 %, 55.700 %, 54.972 %, 54.289 % and 53.660 %; and 25.011 %, 23.455 %, 21.977 %, 20.626 %, and 19.414 % for Re = 12,000, 17,000, 22,000, 27,000, and 32,000, respectively. In addition, the result analysis shows that the optimum thermal performance factor is around 1.513 at the highest Reynolds number and S-downstream._{0} | ||

کلیدواژهها | ||

Mathematical modelling؛ Numerical simulation؛ Heat transfer؛ Rectangular channel؛ S-baffles | ||

مراجع | ||

[1] K.M. Kelkar, and S.V. Patankar, Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins, J. Heat Transfer 109 (1987) 25-30.
[2] P.R. Mashaei, S.M. Hosseinalipour, N. Bagheri, M. Taheri-Ghazvini, and S. Madani, Simultaneous effect of staggered baffles and dispersed nanoparticles on thermal performance of a cooling channel, Appl. Therm. Eng. 120 (2017) 748-762.
[3] S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators. Int. Commun. Heat Mass Transfer 50 (2014) 34-43.
[4] C.B. Hwang, and C.A. Lin, A low Reynolds number two-equation kθ-εθ model to predict thermal fields, Int. J. Heat Mass Transfer 42 (1999) 3217-3230.
[5] A.S. Ambekar, R. Sivakumar, N. Anantharaman, and M. Vivekenandan, CFD simulation study of shell and tube heat exchangers with different baffle segment configurations, Appl. Therm. Eng. 108 (2016) 999-1007.
[6] A.P. Rallabandi, N. Alkhamis, and J.C. Han, Heat transfer and pressure drop measurement for a square channel with 45 deg round-edged ribs at high Reynolds number, Journal of Turbomachinery 133(3) (2011) 031019.
[7] M.A. Habib, A.M. Mobarak, M.A. Sallak, E.A.A. Hadi, and R.I. Affify, Experimental investigation of heat transfer and flow over baffles of different heights, J. Heat Transfer 116 (1994) 363-368.
[8] H. Liu, and J. Wang, Numerical investigation on synthetical performances of fluid flow and heat transfer of semiattached rib-channels, Int. J. Heat Mass Transfer 54 (2011) 575-583.
[9] T.M. Liou, and W.B. Wang, Laser holographic-interferometry study of developing heat-transfer in a duct with a detached rib array, Int. J. Heat Mass Transfer 38(1) (1995) 91-100.
[10] C. Berner, F. Durst, and D.M. McEligot, Flow around baffles, J. Heat Transfer 106 (1984) 743-749.
[11] P. Promvonge, T. Chompookham, S. Kwankaomeng, and C. Thianpong, Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators, Energy Convers. Manage 51 (2010) 1242-1249.
[12] J.C. Han, Y.M. Zhang, and C.P. Lee, Augmented heat transfer square channels with parallel, crossed, and V-shaped ribs, J. Heat Transfer 113 (1991) 590-596.
[13] S. Acharya, S. Dutta, and T.A. Myrum, Heat transfer in turbulent flow past a surface-mounted two-dimensional rib, J. Heat Transfer 120(3) (1998) 724-734.
[14] P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, and C. Thianpong, Numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles, Int. Commun. Heat Mass Transfer 37 (2010) 170-177.
[15] M. Mohammadi Pirouz, M. Farhadi, K. Sedighi, H. Nemati, and E. Fattahi, Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles, Sci. Iran. B 18(2) (2011) 213-221.
[16] P. Dutta, and A. Hossain, Internal cooling augmentation in rectangular channel using two inclined baffles, Int. J. Heat Fluid Flow 26 (2005) 223-232
[17] Y.T. Yang, and C.Z. Hwang, Calculation of turbulent flow and heat transfer in a porous baffled channel, Int. J. Heat Mass Transf. 46(5) (2003) 771-780.
[18] A. Tandiroglu, and T. Ayhan, Energy dissipation analysis of transient heat transfer for turbulent flow in a circular tube with baffle inserts, Appl. Therm. Eng. 26(2) (2006) 178-185.
[19] H. Benzenine, R. Saim, S. Abboudi, and O. Imine, Numerical study on turbulent flow forced-convection heat transfer for air in a channel with waved fins, Mechanics 19(2) (2013) 150-158.
[20] L.C. Demartini, H.A. Vielmo, and S.V Möller, Numeric and experimental analysis of the turbulent flow through a channel with baffle plates, J. Braz. Soc. Mech. Sci. Eng. 26(2) (2004) 153-159.
[21] S. Kwankaomeng, and P. Promvonge, Numerical prediction on laminar heat transfer in square duct with 30° angled baffle on one wall, Int. Comm. Heat Mass Transfer 37(7) (2010) 857-866.
[22] B. Peng, Q. W. Wang, C. Zhang, G. N. Xie, L. Q. Luo, Q. Y. Chen, and M. Zeng, An experimental study of shell-and-tube heat exchangers with continuous helical baffles, J. Heat Transfer 129 (2007) 1425-1431.
[23] P. Stehlik, J. Nemcansky, and D. Kral, Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles , Heat Transfer Eng. 15(1) (1994) 55-65.
[24] Y. Menni, A. Azzi, Design and performance evaluation of air solar channels with diverse baffle structures, Computational Thermal Sciences 10(3) (2018) 225-249.
[25] A. Abene, V. Dubois, M. Le Ray, and A. Ouagued, Study of a solar air flat plate collector: use of obstacles and application for the drying of grape, J. Food Eng. 65(1) (2004) 15-22.
[26] F. Wang, J. Zhang, and S. Wang, Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins, Propulsion and Power Research 1(1) (2012) 64-70.
[27] W. Jedsadaratanachai, N. Jayranaiwachira, and P. Promvonge, 3D numerical study on flow structure and heat transfer in a circular tube with v-baffles, Chinese J. Chemical Eng. 23 (2015) 342-349.
[28] R. Kumar, R. Chauhan, M. Sethi, A. Sharma, and A. Kumar, Experimental investigation of effect of flow attack angle on thermohydraulic performance of air flow in a rectangular channel with discrete v-pattern baffle on the heated plate, Advances Mech. Eng. 8(5) (2016) 1-12.
[29] S. Chamoli, and A Taguchi, Approach for optimization of flow and geometrical parameters in a rectangular channel roughened with v down perforated baffles, Case Studies Thermal Eng. 5 (2015) 59-69.
[30] C. Zamfirescu, and M. Feidt, Cascaded fins for heat transfer enhancement, Heat Transfer Eng. 28(5) (2007) 451-459.
[31] M. Hosseini, D.D. Ganji, and M.A. Delavar, Experimental and numerical evaluation of different vortex generators on heat transfer, Appl. Therm. Eng. 108 (2016) 905-915.
[32] A. Kumar, and M.H. Kim, Convective heat transfer enhancement in solar air channels, Appl. Thermal Eng. 89 (2015) 239-261.
[33] S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators, Int. Commun. Heat Mass Transfer 50 (2014) 34-43.
[34] S.V. Möller, L.A.M. Endres, and G. Escobar, Wall pressure field in a tube bank after a baffle plate, Transactions of SMiRT 15-15th Int. Conf. Structural Mechanics in Reactor Technology, Seoul, 7 (1999) 262-275.
[35] I. Tanasawa, S. Nishio, K. Tanano, and M. Tado, Enhancement of forced convection heat transfer in a rectangular channel using turbulence promoters, Proc. of the ASME-USME Thermal Engineering Joint Conference (1983) 395-402.
[36] Z.X. Yuan, W.Q. Tao, and Q.W. Wang, Numerical prediction for laminar forced convection heat transfer in parallel-plate channels with streamwise-periodic rod disturbances , Int. J. Numerical Methods Fluids 28 (1998) 1371-1387.
[37] R. Kamali, and A.R. Binesh, The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces, Int. Commun. Heat Mass Transfer 35 (2008) 1032-1040.
[38] C.H. Cheng, and W.H. Huang, Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays , Int. J. Heat Mass Transfer 34(11) (1991) 2739-2749.
[39] J.R. Lopez, N.K. Anand, and L.S. Fletcher, Heat transfer in a three-dimensional channel with baffles, Numerical Heat Transfer, Part A: Applications: An Int. J. Computation and Methodology 30(2) (1996) 189-205.
[40] S.S. Mousavi, and K. Hooman, Heat and fluid flow in entrance region of a channel with staggered baffles, Energy Conversion and Management 47(15) (2006) 2011-2019.
[41] Y. Menni, A. Azzi, C. Zidani, Computational analysis of heat transfer and fluid flow characteristics over flat bars of different heights, Revue des Energies Renouvelables 19(3) (2016) 345-366.
[42] P. Dutta, and S. Dutta, Effects of baffle size, perforation and orientation on internal heat transfer enhancement, Int. J. Heat Mass Transfer 4 (1998) 3005-3013.
[43] D. Sahel, H. Ameur, R. Benzeguir, and Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Appl. Therm. Eng. 101 (2016) 156-164.
[44] P.R. Mashaei, M. Taheri-Ghazvini, R. Shabanpour Moghadam, and S. Madani, Smart role of Al2O3-water suspension on laminar heat transfer in entrance region of a channel with transverse in-line baffles, Appl. Therm. Eng. 112 (2017) 450-463.
[45] S.S. Mousavi, and K. Hooman, Heat and fluid flow in entrance region of a channel with staggered baffles, Energy Conversion and Management 47(15) (2006) 2011-2019.
[46] S. Sripattanapipat, and P. Promvonge, Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, Int. Comm. Heat Mass Transfer 36(1) (2009) 32-38.
[47] Nasiruddin, and M.K. Kamran Siddiqui, Heat transfer augmentation in a heat exchanger tube using a baffle, Int. J. Heat Fluid Flow 28(2) (2007) 318-328.
[48] K. Torii, K.M. Kwak, and K. Nishino. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers, Int. J. Heat Mass Trans. 45 (2002) 3795-3801.
[49] H.M. Yeh, and W.H. Chou, Efficiency of solar air heaters with baffles, Energy 16(7) (1991) 983-987.
[50] T. Giovanni, Heat transfer in rectangular channels with transverse and V-shaped broken ribs , Int. J. Heat Mass Trans. 47 (2004) 229-243.
[51] R. Bouchenafa, and R. Saim, Effect of position and height of a shield on convective heat transfer performances of plate fin heat sink, Int. J. Numerical Methods Heat Fluid Flow 25(5) (2015) 1047-1063.
[52] M. Ghalambaz, E. Jamesahar, M.A. Ismael, and A.J. Chamkha, Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity, International Journal of Thermal Sciences 111 (2017) 256-273.
[53] H. Zargartalebi, A. Noghrehabadi, M. Ghalambaz, and I. Pop, Natural convection boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid: case of variable thermophysical properties, Transport in Porous Media 107(1) (2015) 153-170.
[54] A. Noghrehabadi, M. Ghalambaz, M. Ghalambaz, and A. Ghanbarzadeh, Comparing thermal enhancement of Ag-water and SiO2-water nanofluids over an isothermal stretching sheet with suction or injection, Journal of Computational and Applied Research in Mechanical Engineering 2(1) (2012) 37-49.
[55] A. Noghrehabadadi, M. Ghalambaz, and A. Ghanbarzadeh, Heat transfer of magnetohydrodynamic viscous nanofluids over an isothermal stretching sheet, Journal of Thermophysics and Heat transfer 26(4) (2012) 686-689.
[56] A. Noghrehabadi, R. Pourrajab, and M. Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, International Journal of Thermal Sciences 54 (2012) 253-261.
[57] A. Noghrehabadi, R. Mirzaei, M. Ghalambaz, A. Chamkha, and A. Ghanbarzadeh, Boundary layer flow heat and mass transfer study of Sakiadis flow of viscoelastic nanofluids using hybrid neural network-particle swarm optimization (HNNPSO), Thermal Science and Engineering Progress 4 (2017) 150-159.
[58] M. Sabour, M. Ghalambaz, and A. Chamkha, Natural convection of nanofluids in a cavity: criteria for enhancement of nanofluids, International Journal of Numerical Methods for Heat & Fluid Flow 27(7) (2017) 1504-1534.
[59] M. Ghalambaz, A. Doostani, E. Izadpanahi, and A.J. Chamkha, Phase-change heat transfer in a cavity heated from below: The effect of utilizing single or hybrid nanoparticles as additives, Journal of the Taiwan Institute of Chemical Engineers 72 (2017) 104-115.
[60] B.E. Launder, and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods Applied Mechanics Eng. 3 (1974) 269-289.
[61] F. Incropera, and P.D. Dewitt, Introduction to heat transfer, fifth ed. John Wiley & Sons Inc., 2006.
[62] S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill, New York, 1980.
[63] B.P. Leonard, and S. Mokhtari , Ultra-sharp nonoscillatory convection schemes for high-speed steady multidimensional flow, NASA TM 1-2568, NASA Lewis Research Center, 1990. | ||

آمار تعداد مشاهده مقاله: 99 تعداد دریافت فایل اصل مقاله: 56 |
||