رابطه بین تجمع ترکیبات نیتروژن‌دار و قندی‌ها: و تحمال به نش شوری در گیاه کلزا
(Brassica napus L.)

(ب) وحید اطلاعی پاک، مجد نیپور و موسی مسکرایی

(V.atlassi@gmail.com)

۱- نویسنده مسئول: استادیار گروه کشاورزی، دانشگاه پیام نور
۲- استاد دانشکده کشاورزی، دانشگاه شهید چمران اهواز
۳- دانشیار دانشکده کشاورزی، دانشگاه شهید چمران اهواز

تاریخ دریافت: ۱۳۹۳/۰۱/۰۷
تاریخ پذیرش: ۱۳۹۳/۰۲/۲۸

چکیده
تنها های غیریستی نظر شوری سبب افزایش ترکیبات نیتروژن‌دار مانند پروتئین و پروتئین‌های محلول در گیاه می‌گردد. به منظور بررسی این ترکیبات در تحمال به شوری، آزمایش روش گیاه کلزا به صورت کرت های خرد شده بر پایه طرح کاملاً تصادفی در سه تکرار در سال ۱۳۹۰ آغاز گردید. شوری به عنوان عامل اصلی در سطح شامل ۱۰۰، ۱۵۰ و ۲۰۰ میلی‌مول در لیتر کلرید سدیم در نظر گرفته شد و سه رقم کلزا سطح عامل فری را تشکیل دادند. شوری باعث کاهش سطح محلول مقدمه
ینکی از شیوه‌های درک اساس مولکولی مقاومت به شوری شناسایی و تعیین پروتئین‌های است که تحت تنش شوری تولید می‌شود (Mohamed، 2005). پروتئین‌های متعددی در ارتباط با تنش شوری در گونه‌های مختلف گیاهی مورد شناسایی قرار گرفته است. این پروتئین‌ها ممکن است در گیاه سنگ درنی و یا باشند ممکن است در غلفت‌های پایین در گیاه وجود داشته باشد. یا باشد.
روی نقش قند‌ها در سازگاری گونه‌های برای‌پکیا به‌نشان شوری کمتر از آن است که بتوانند ترکیبات را مرتبط با تحمل به شوری قلیان‌دار کرد. پژوهش زیادی لازم است تا بتوان نقش واقعی قند‌های محلول را در تحمل به‌نشان شوری در گونه‌های برای‌پکیا آблکت نمود. هدف از این تحقیق بررسی ارتباط بین ترکیبات نیترولن‌دار و قند‌های محلول با تحمل به شوری در ارقام مختلف گیاه کلزا می‌باشد.

**مواد و روش‌ها**

این آزمایش در سال 1390 در دانشگاه کشاورزی دانشگاه شهید چمران اهواز در شرایط کنترل شده و در اتفاق‌گرندش انجام گرفت و روش‌های انتقال‌زا و روش‌های مربی‌گر به‌صورت مستقیم و با هم‌آمیزی در 5 سطح (صفر، 120 و 360 میکرون) و بر اساس روش‌های استاندارد گروه شیمیایی گیاهی و با نرم‌افزار کاری و تحقیقات محلول، تعداد 60 گیاه در گروه سه تا سه تا سه تعداد 2 گیاه در دستگاه صنعتی کاری و تحقیقات محلول. اندازه‌گیری هیدروپورتیک با محلول غلیظ گودالاند انجام شد. به‌کارگیری جوانان در رنگ‌های مختلف تعبیه، شده در صفحه‌های پوستی با ضخامت 2 سانتیمتر قرار داده شدند. گیاه‌هایی در دو رنگ غلیظ گودالاند بدون اعمال نوشته‌شده در محلول غلیظ گودالاند به روش طبیعی خود اعمال شدند. این تحقیق از طریق اجرای دو آزمایش جامعه مورد دانستن با توجه به روش‌های مورد استفاده در این تحقیق، می‌تواند به‌عنوان مدل عددی برای تحقیق با استفاده از آزمون‌های مختلف گیاهی در سازگاری گونه‌های برای‌پکیا به‌نشان شوری کمتر از آن است. در خصوص این امر، در بیش از 5 سطح دقت و اطمینان ایجاد شده است. در این تحقیق از طریق استفاده از گیاه‌های مختلف، می‌تواند به‌عنوان یکی از مکانیسم‌های مقاومت مشاهده و مطالعات بر
نظر آماری معنی دار بود (جدول 1). اثر رقم نیز بر همه صفات مذکور به جز نسبت قند در شاخه ریشه معنی دار نبود. اثر متوالی گروه و رقم بر صفات ماده جنس شاخه‌دار، سبیم شاخه‌دار و پروپتین از نظر آماری معنی دار گردید (جدول 1). شوری باعث افزایش سبیم شاخه‌دار، پروپتین، قند در ریشه و قند شاخه‌دار شد ولی مقدار ماده خشک ریشه، ماده خشک شاخه‌دار و نیترات شاخه‌دار را کاهش داد (جدول 2). با افزایش میزان شوری، وزن خشک شاخه‌دار و ریشه در هر سه رقم کاهش یافت (جدول 3). اما این کاهش در بستر بود. در تیمار 150 میلی‌مول در لیتر ماده خشک شاخه‌دار در رقم حساس، سبیم با افزایش شوری در هر سه رقم در اندازه‌گیری افزایش یافت و نیترات شاخه‌دار در جدول 3. ماده خشک ریشه نیز در تیمار 150 میلی‌مول در لیتر در رقم حساس، 29 درصد کاهش داشت که مقدار این کاهش نسبت به ارقام متحمل بستر بود. مقدار سبیم با افزایش شوری در هر سه رقم در اندازه‌گیری افزایش یافت و نیترات شاخه‌دار در جدول 4 ملاحظه می‌گردد از ارقام متحمل بستر است. با افزایش شوری در این آزمایش مقدار پروپتین و پروپتین‌های محلول در هر سوئیپ‌های افزایش یافت و نیترات در بستر از دو رقم دیگر بود. در تیمار 100 میلی‌مول در لیتر در افزایش معنی‌داری در مقدار پروپتین و پروپتین‌های محلول مشاهده نگردید، اما در تیمار 150 میلی‌مول در لیتر افزایش پروپتین‌های محلول نسبت به تیمار شاهد معنی‌دار بود. در تیمار 150 میلی‌مول در لیتر مقدار پروپتین در رقم حساس بیش از دو رقم دیگر افزایش داشت (جدول 3). برهمکنش شوری و رقم از این نظر غیرمعنی‌دار بود (جدول 1). افزایش پروپتین در تیمار MHA4921 به ترتیب 10 و 20 درصد و در MHA4026 به ترتیب 10 و 20 درصد بود.
Table 1. Means squares from analysis of variance of data for traits in rapeseed cultivars under different salinity levels

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>(df)</th>
<th>Shoot biomass</th>
<th>Root biomass</th>
<th>Shoot Na⁺</th>
<th>Proline</th>
<th>Protein</th>
<th>Shoot NO₃⁻</th>
<th>Root biomass</th>
<th>Shoot/Root sugar</th>
<th>Root sugar</th>
<th>Shoot/Root sugar</th>
<th>Shoot sugar</th>
<th>Root sugar</th>
<th>Shoot/Root sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(g/plant)</td>
<td>(g/plant)</td>
<td>(mg/g DW)</td>
<td>(mg/g FW)</td>
<td>(mg/g FW)</td>
<td>(mg/g DW)</td>
<td>(mg/g FW)</td>
<td>(mg/g DW)</td>
</tr>
<tr>
<td>Salinity (mm)</td>
<td>2</td>
<td>0.1790</td>
<td>0.0054</td>
<td>8.77</td>
<td>0.031</td>
<td>1428.03</td>
<td><strong>0.2126</strong></td>
<td><strong>22.264</strong></td>
<td>6</td>
<td>0.1050</td>
<td>0.0364</td>
<td>8.77</td>
<td>0.031</td>
<td>1428.03</td>
<td><strong>0.2126</strong></td>
<td><strong>22.264</strong></td>
<td>6</td>
<td>0.1050</td>
<td>0.0364</td>
<td>8.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultivar</td>
<td>2</td>
<td>3.908**</td>
<td>0.0339*</td>
<td>71.81</td>
<td>0.227*</td>
<td>1159.70</td>
<td><strong>0.515</strong></td>
<td><strong>1159.70</strong></td>
<td>2</td>
<td>40.035</td>
<td>0.3641*</td>
<td>3.908**</td>
<td>0.0339*</td>
<td>71.81</td>
<td><strong>0.227</strong></td>
<td><strong>1159.70</strong></td>
<td>2</td>
<td>40.035</td>
<td>0.3641*</td>
<td>3.908**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SxC</td>
<td>4</td>
<td>0.3703*</td>
<td>0.0042**</td>
<td>73.75</td>
<td>0.087</td>
<td>1159.70</td>
<td><strong>0.515</strong></td>
<td><strong>1159.70</strong></td>
<td>4</td>
<td>40.035</td>
<td>0.3641*</td>
<td>0.3703*</td>
<td>0.0042**</td>
<td>73.75</td>
<td><strong>0.087</strong></td>
<td><strong>1159.70</strong></td>
<td>4</td>
<td>40.035</td>
<td>0.3641*</td>
<td>0.3703*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error a</td>
<td>6</td>
<td>2.28</td>
<td>0.0054</td>
<td>14.28</td>
<td>0.031</td>
<td>1428.03</td>
<td><strong>0.2126</strong></td>
<td><strong>22.264</strong></td>
<td>6</td>
<td>0.1050</td>
<td>0.0364</td>
<td>8.77</td>
<td>0.031</td>
<td>1428.03</td>
<td><strong>0.2126</strong></td>
<td><strong>22.264</strong></td>
<td>6</td>
<td>0.1050</td>
<td>0.0364</td>
<td>8.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error b</td>
<td>12</td>
<td>0.1050</td>
<td>0.0059</td>
<td>11.44</td>
<td>0.035</td>
<td>28.66</td>
<td>0.515</td>
<td><strong>22.264</strong></td>
<td>2</td>
<td>40.035</td>
<td>0.3641*</td>
<td>3.908**</td>
<td>0.0364*</td>
<td>11.44</td>
<td><strong>0.035</strong></td>
<td><strong>28.66</strong></td>
<td>2</td>
<td>40.035</td>
<td>0.3641*</td>
<td>3.908**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns: Non-significant, **, *: Significant at 1% and 5% probability level respectively

Table 2. Mean comparison of rapeseed cultivars under different salinity levels

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Shoot biomass</th>
<th>Root biomass</th>
<th>Shoot Na⁺</th>
<th>Proline</th>
<th>Protein</th>
<th>Shoot NO₃⁻</th>
<th>Root biomass</th>
<th>Shoot/Root sugar</th>
<th>Root sugar</th>
<th>Shoot/Root sugar</th>
<th>Shoot sugar</th>
<th>Root sugar</th>
<th>Shoot/Root sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyola401</td>
<td>24.55</td>
<td>13.88</td>
<td>152</td>
<td>0.53</td>
<td>0.44</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHA921</td>
<td>30.66</td>
<td>16.22</td>
<td>71.6</td>
<td>0.461</td>
<td>0.26</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHA926</td>
<td>37.88</td>
<td>17.66</td>
<td>49.6</td>
<td>0.988</td>
<td>0.13</td>
<td>150</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>3.55</td>
<td>1.78</td>
<td>8.7</td>
<td>0.20</td>
<td>0.08</td>
<td>LSD</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means values within a column followed by the same letter are not significantly different (p=0.05) according to the LSD test.
جدول ۳: مقایسه میانگین برهمکنش شوری و رقم برای صفات مورد مطالعه

<table>
<thead>
<tr>
<th>میانگین</th>
<th>تأثیر</th>
<th>درصد</th>
<th>رقم</th>
<th>بیشترین</th>
<th>مقدار</th>
<th>میانگین</th>
<th>درصد</th>
<th>رقم</th>
<th>بیشترین</th>
<th>مقدار</th>
<th>میانگین</th>
<th>درصد</th>
<th>رقم</th>
<th>بیشترین</th>
<th>مقدار</th>
<th>میانگین</th>
<th>درصد</th>
<th>رقم</th>
<th>بیشترین</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot sugar (mg/g DW)</td>
<td>1.84b</td>
<td>24d</td>
<td>35e</td>
<td>144a</td>
<td>37e</td>
<td>0.52e</td>
<td>19e</td>
<td>0.53e</td>
<td>5.33e</td>
<td>0</td>
<td>Hyola401</td>
<td>MHA4921</td>
<td>MHA4026</td>
<td>MHA4921</td>
<td>MHA4026</td>
<td>MHA4921</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root sugar (mg/g DW)</td>
<td>2.43a</td>
<td>39a</td>
<td>16abc</td>
<td>47c</td>
<td>50e</td>
<td>0.73bc</td>
<td>16c</td>
<td>0.33b</td>
<td>0.53c</td>
<td>0.57c</td>
<td>0.57c</td>
<td>0.57c</td>
<td>0.57c</td>
<td>0.57c</td>
<td>0.57c</td>
<td>0.57c</td>
<td>0.57c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot Na (mg/g FW)</td>
<td>1.66b</td>
<td>25d</td>
<td>15bc</td>
<td>159a</td>
<td>40de</td>
<td>0.56bc</td>
<td>16c</td>
<td>0.39b</td>
<td>4.33b</td>
<td>0</td>
<td>MHA4921</td>
<td>MHA4026</td>
<td>MHA4921</td>
<td>MHA4026</td>
<td>MHA4921</td>
<td>MHA4026</td>
<td>MHA4921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root biomass (g/plant)</td>
<td>1.83b</td>
<td>33b</td>
<td>18bc</td>
<td>82b</td>
<td>48cd</td>
<td>0.57cd</td>
<td>35cd</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td>0.27bc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot biomass (g/plant)</td>
<td>2.21ab</td>
<td>42a</td>
<td>19a</td>
<td>65b</td>
<td>59b</td>
<td>0.88b</td>
<td>50a</td>
<td>0.15cd</td>
<td>0.88b</td>
<td>0.88b</td>
<td>0.88b</td>
<td>0.88b</td>
<td>0.88b</td>
<td>0.88b</td>
<td>0.88b</td>
<td>0.88b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot Na (mg/g FW)</td>
<td>1.84b</td>
<td>24d</td>
<td>13e</td>
<td>152a</td>
<td>36e</td>
<td>0.51c</td>
<td>18c</td>
<td>0.39b</td>
<td>4.11b</td>
<td>0</td>
<td>MHA4026</td>
<td>Hyola401</td>
<td>Hyola401</td>
<td>Hyola401</td>
<td>Hyola401</td>
<td>Hyola401</td>
<td>Hyola401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein (mg/g FW)</td>
<td>2.86b</td>
<td>28bc</td>
<td>15bc</td>
<td>65b</td>
<td>55bc</td>
<td>0.82bc</td>
<td>34d</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td>0.18cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline (mg/g FW)</td>
<td>1.77b</td>
<td>32bc</td>
<td>18ab</td>
<td>36e</td>
<td>52a</td>
<td>1.38bc</td>
<td>36cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td>0.08cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root biomass (g/plant)</td>
<td>0.55</td>
<td>5.1</td>
<td>3</td>
<td>17.6</td>
<td>8.9</td>
<td>0.33</td>
<td>6.01</td>
<td>0.13</td>
<td>6.01</td>
<td>0.13</td>
<td>6.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot biomass (g/plant)</td>
<td>0.55</td>
<td>5.1</td>
<td>3</td>
<td>17.6</td>
<td>8.9</td>
<td>0.33</td>
<td>6.01</td>
<td>0.13</td>
<td>6.01</td>
<td></td>
</tr>
</tbody>
</table>

Means values within a column followed by the same letter are not significantly different (p=0.05) according to the LSD test.

می‌باشد اما اختلاف معنی‌داری از این لحاظ بین ارقام در بالاترین سطح شوری مشاهده نمی‌شود. افزایش قند در ریشه در بالاترین سطح شوری در می‌باشد. MHA4026 و MHA4921 به ترتیب ۳۲ و ۳۳ درصد بوده که بیشترین توجه داشته در ریشه کمتر از اندازه‌های هواپیمای ۱ و ۲ و نسبت درصد در اندام هواپیمای به ریشه در هم سطح شوری بیش از یک می‌باشد. نسبت قند در اندازه‌های مشاهده در بالاترین سطح شوری در MHA4921 و MHA4026 به ترتیب ۱/۴۳ و ۲/۸۱ بوده که بیش از رقم حساس (۱/۸۸) می‌باشد. اما اختلاف بین MHA4921 و MHA4026 از این لحاظ غیرمعنی‌دار است.

بحث

چنانچه در جدول (۳) ملاحظه می‌گردد در سطوح مختلف شوری فرد در ماهدمشک در اندازه‌های هواپیمای در ارقام محتمل بیشتر از رقم حساس بوده و درصد کاهش در تیمار ۱۵۰ میلی‌مول در لیتر نیز مقدار بیشتر در رقم حساس، ۱۰۰ درصد افزایش داشت و مقدار آن بیش از رقم دیگر بود. مقدار نیترات با افزایش شوری در هر سه رقم کاهش یافت (جدول ۳). درصد کاهش نیترات در تیمار ۱۵۰ میلی‌مول در لیتر در MHA4921 به ترتیب ۳۹ و ۶۹ درصد و در رقم حساس، ۷۶ درصد بود. بیشترین مقدار قند در MHA4921 در ریشه و اندازه هواپیمای ۱۵۰ میلی‌مول در لیتر دیده شد. در تیمار ۱۵۰ میلی‌مول MHA4921 و Hyola401 در لیتر مقدار در اندازه هواپیمای ۱۵۰ میلی‌مول در لیتر افزایش داشت (جدول ۳). چنانچه در جدول (۳) ملاحظه می‌گردد اثر متغیر شوری و رقم از این نظر غیرمعنی‌دار بود. در همه ارقام روند افزایشی در قند در ریشه با افزایش شوری مشاهده می‌گردد (جدول ۳). بیشترین مقدار قند در میلی‌مول در لیتر مربوط به MHA4921 می‌باشد.

به نظر می‌رسد سدیم در ارقام متحمل به نحو مطلوبی در اندازه‌های دبیرتیتی شده است. تحت تنش شوری، پروتئین علاوه بر اینکه در زایمان جهت تنش دادن حساسیت و پلیمر شدن باعث ناتوانی غشاء سلولی تزیز می‌شود (2012). در این آزمایش تعداد متفاوت پروتئین تحت تنش شوری در هر سه ژنوتیپ مشاهده می‌شود. از این پروتئین و بروتئین‌های محلول در رقم حساس تنش شوری بیش از دو رقم متحمل با گیاه کلزا یک گیاه نسبتاً متحمل به شوری است و عملکرد آن زمانی که هدایت الکتریکی عضله گوش خان با شبیه به 10 دسی زیمنس بر مرد ساده، کاهش در این آزمایش داد (Shannon، 1998). در این آزمایش در نمای 150 میکرومول در لیتر مقدار پروتئین و بروتئین‌های محلول در زنوتیب حساس افزایش چشمگیری از خود نشان داد. در آزمایشی اوایل (Oprica، 2011) افزایش سوخت در گیاه کلزا با 50 به 150 میکرومول در لیتر یافته است. در مرحله گیاه‌های خاص بیان افزایش پروتئین‌های محلول شده در این آزمایش پروتئین و بروتئین‌های محلول در ارقام متحمل تحت تنش شوری افزایش کمتری از خود نشان داد. با وجود اینکه برخی محققین (Zhani et al., 2012؛ 2009؛ Murata et al., 2009) به نفی پرولین در کاهش اثرات تنش شوری اشاره نموده‌اند و تعمیم آن را عامل ماده خشک در رقم حساس بیشتر است. با مقایسه ارقام حساس و متحمل به شوری در گیاه کلزا مشخص شده است که تحت تنش شوری عملکرد یکان متاسب با کاهش مقدار ماده خشک در مرحله رونده. (Francois, 1994). در بیشتر گونه‌های زراعی عمل غیرعاملی در مرحله (Dasgan et al., 2002). ارقام مختلف کلزا مورد تجزیه‌گیری قرار می‌گیرد. (Qasim et al., 2003؛ Francois, 1994، Mokhamed et al.، Zhang et al., 2001؛ 2006) طبق گفته محققین سپسی سدیم در ارقام متحمل کلزا با توجه در واکنش کلزا می‌باشد Mokhamed et al.، Zhang et al., 2001 (2006).

به نظر می‌رسد سدیم در ارقام متحمل به نحو مطلوبی در اندازه‌های دبیرتیتی شده است. تحت تنش شوری، پروتئین علاوه بر اینکه در زایمان جهت تنش دادن حساسیت و پلیمر شدن باعث ناتوانی غشاء سلولی تزیز می‌شود (2012). در این آزمایش تعداد متفاوت پروتئین تحت تنش شوری در هر سه ژنوتیپ مشاهده می‌شود. از این پروتئین و بروتئین‌های محلول در رقم حساس تنش شوری بیش از دو رقم متحمل با گیاه کلزا یک گیاه نسبتاً متحمل به شوری است و عملکرد آن زمانی که هدایت الکتریکی عضله گوش خان با شبیه به 10 دسی زیمنس بر مرد ساده، کاهش در این آزمایش داد (Shannon، 1998). در این آزمایش در نمای 150 میکرومول در لیتر مقدار پروتئین و بروتئین‌های محلول در زنوتیب حساس افزایش چشمگیری از خود نشان داد. در آزمایشی اوایل (Oprica، 2011) افزایش سوخت در گیاه کلза با 50 به 150 میکرومول در لیتر یافته است. در مرحله گیاه‌های خاص بیان افزایش پروتئین‌های محلول شده در این آزمایش پروتئین و بروتئین‌های محلول در ارقام متحمل تحت تنش شوری افزایش کمتری از خود نشان داد. با وجود اینکه برخی محققین (Zhani et al., 2012؛ 2009؛ Murata et al., 2009) به نفی پرولین در کاهش اثرات تنش شوری اشاره نموده‌اند و تعمیم آن را عامل
افراشی قندزا در اندام هوایی و ریشه‌ها در گیاه کلزا
Ashraf and Ali, 2008) گزارش شده است. به نظر می‌رسد که قندزا محلول بکی از عوامل مقاومت به شوری در ارگان متحمل
Lacerda et al., 2003). برای مثال با وجود اینکه تأثیر پرنی در
کاهش غلظت سدیم و کلر در ریگنسی با ابزار ریگنسی
است، اما در برخی ارقام زراعی هیچ گونه تغییری در
غلظت این عنصر سرم در ریگنسی ایجاد نکرده است.
همچنین تاثیر شده است که در برخی گیاهان، افراشی
پرنی موی صحیح، با کلرپلاست و میتودری
می‌گردد (Ashraf and Foolad, 2007). مقدار
نترین در اندام هوایی بحران به رسم زیاد از افراشی
شوری گشایش یافته (جدول 3). به عضوی محققات با
افراشی شوری متابولیسم نترین با سمت تولید پرنی و
پرنی‌های محلول غیر جهت می‌دهد (Ashraf and Foolad, 2007).
گزارش کرده‌اند که اثرات متحمل کلزا دارای مقدار
کمتری از پرنی و پرتونی‌های محلول در سطوح
پالینی نسبت به اثرات حساس می‌باشد. به نظر
می‌رسد که رقم حساس در این آزمایش فاقد مکانیسم
مقاومتی جهت جلوگیری از اثرات سمنت بیون سدیم
در اندام هوایی و همین امر باعث افزایش مقدار
پرنی و پرتونی‌های محلول نسبت به ارگان متحمل
شده است. نتایج امسیی در گیاهان تحت شرایط شوری
Ashraf and Foolad, 2007) می‌تواند به مقدار پنجه دارد
(Bai et al., 2013). نتایج اجمالی
به شوری در برخی گونه‌های زراعی وایسته به تجربه
Kerepesi and Galiba, 2000) است. (Chen et al., 2011; Zhang et al., 2009
اختلاف بین مقدار نتنها در اندام هوایی در بالاترین
سطح شوری در ارگان متحمل و حساس معنی‌دار.
References


